

NanoSuite
 Software Operation Manual

Release 6.0

Product:	Software Operation Manual
Document number:	$1-01-1.0$
Date generated:	Thursday, July 01, 2010

Statement

Copyright

Trademarks

Microsoft, Windows, and Windows 2000	are the registered trademarks of Microsoft, Inc.
AutoCAD, DXF	are the registered trademarks of Autodesk, Inc.
Design CAD	is the registered trademark of American Small Business Computers, Inc.
GDSII	is the registered trademark of Calma GE.

Addresses

Raith GmbH	Tel.: $+49(0) 231 / 95004-0$
Konrad-Adenauer-Allee 8	Fax.: +49 (0)231 / 95004-460
44263 Dortmund	WWW: www.raith.com
Germany	Email: support@raith.de

Raith USA, Inc.	Tel.: +16317389500
2805 Veteran's Highway	Fax.: +16317382055
Suite 23	WWW: www.raith.com
Ronkonkoma, NY 11779	Email: support@raithusa.com

Raith Asia Ltd.	Tel.: +85228876828
Two Chinachem Exchange Square	Fax.: +85266270368
No. 338 King's Road	WWW: www.raith.com
Floor 11, Unit 03	Email: support@raithasia.com
North Point, Hong Kong	

Structure of software operation manual

The chapters are structured into different tasks, each task consists of several steps. Each chapter has an aim specified at the start of each chapter, and will guide you step-by-step through the process of achieving this aim.

Some of the tasks are optional and are designed to give additional useful information. These additional information sections are clearly marked with a 'Diversion Start' and a ‘Diversion End’ sign. Experienced users may choose to skip these sections and continue with the next task.

Diversion Start

Diversion End

To set up a patterning task, you will need to carry out chapters 1-5 first before performing the patterning in chapter 7. It is important to study the chapters in the given order.
1 Getting Started
TASK 1: Start the system 1-2
TASK 2: Preparing a suitable sample 1-4
TASK 3: Loading and unloading samples 1-5
TASK 4: Obtaining an image 1-7
TASK 5: Finding your sample 1-13
2 E-beam Optimization
TASK 1: Focusing on the sample 2-2
TASK 2: Aperture alignment 2-3
TASK 3: Astigmatism correction 2-6
TASK 4: Further E-beam optimization 2-7
TASK 5: Creating a spot 2-8
TASK 6: Checking the leveling limits 2-10
3 Stage Adjustment
TASK 1: Angle correction 3-2
TASK 2: Origin correction 3-4
TASK 3: Adjust W 3-5
TASK 4: Digital addressing 3-6
4 Writefield Alignment
4.1 Standard Procedure
TASK 1: Locating a mark or particle 4-2
TASK 2: Defining the alignment procedure 4-3
TASK 3: Executing the alignment procedure manually 4-7
TASK 4: Setting up the automated alignment 4-11
TASK 5: Checking the precision of the alignment 4-16
4.2 Using FBMS and Beam Tracking
TASK 1: Continue with located particle 4-18
TASK 2: Defining the alignment procedure 4-19
TASK 3: Executing the alignment procedure 4-22
TASK 4: Setting up the automated alignment 4-22
TASK 5: Checking the precision of the alignment 4-22
5 General Pattern Design
TASK 1: Creating a design 5-2
TASK 2: Pattern design via toolbox 5-5
TASK 3: Modifying structures 5-10
TASK 4: Measuring a distance 5-14
TASK 5: Placing of elements in different layers 5-15
TASK 6: Saving deleting and copying of structures 5-19
TASK 7: Applying varying dose factors 5-20
6 Advanced Pattern Design
6.1 Standard
TASK 1: Design using hierarchy 6-2
TASK 2: Studying chessy.csf 6-7
6.2 Using FBMS
TASK 1: Designing FBMS elements 6-10
7 Patterning
7.1 Standard
TASK 1: Familiarization with demo pattern 7-2
TASK 2: Measuring the beam current 7-5
TASK 3: Patterning 7-6
TASK 4: Developing the sample 7-14
TASK 5: Multiple patterning 7-15
7.2 Patterning for FBMS Elements
TASK 1: Patterning parameters for FBMS 7-16
8 Mix \& Match Patterning
TASK 1: Locating the first mark 8-2
TASK 2: Defining local UV positions of marks 8-3
TASK 3: 3-points adjustment 8-5
TASK 4: Semi-automated Writefield alignment 8-8
TASK 5: Automated Writefield alignment 8-11
TASK 6: Patterning 8-19
9 Automation
TASK 1: Setting Column Control parameters 9-2
TASK 2: Activating Column Control in a Positionlist 9-5
TASK 3: Automated Writefield alignment 9-6
TASK 4: Further automation 9-9
10 Patterning on Wafer
TASK 1: Creating a Wafermap 10-2
TASK 2: Performing the Wafer adjustment 10-6
TASK 3: Performing the Deskew 10-8

1 Getting Started

AIM

The aim of this chapter is to familiarize yourself with the basic functions of the RAITH Turnkey. The first task is to switch the system on, load the sample and to obtain an image of your sample.

As the starting point for this chapter it is assumed that the system is on, but that no one is logged in.

[^0]
Task 1 Start the system

If the system has been left in another status, i.e. switched off completely, please contact a specialist for advice. For the operation of the RAITH Turnkey system, both the column and lithography software have to be installed and in addition the RemCon32 at the column PC must be running in order to provide the connection between them.

STEP $1>$ Start the column software and \log in as user training and password training.
The column desktop displays the operation icons at the top and the image information, as well as the data zone at the bottom of the screen.

Figure 1-1 Operation icons of the column desktop.

STEP 2

Figure 1-2 Opening window of RAITH Lithography software.

The control bar enables different windows to be displayed.

STEP 3

Check if the lithography software has control over the column software by clicking at the IMG icon in the lithography desktop. The icon has two modes; when showing IMG (imaging mode), the column is controlled through the column software, i.e. a scan is running. In the other mode the icon will display PAT (patterning mode), in this case the column is controlled via the lithography software and the last scan will be frozen, therefore no running scans are shown.

Figure 1-3 Selecting the IMG icon.

STEP 4 Check for the status of the columns at the lower right corner of the column desktop, to see if the vacuum condition is OK , as shown in the lower right corner of the column desktop. We assume that the gun is running (green check mark) and that the acceleration voltage EHT is switched off (red cross).

Figure 1-4 Checking the EHT status.

To change the status of Vac, Gun or EHT, click on the red cross or the green check mark.

A dialog will be shown, in which the shutdown procedure for the Gun can be initiated, or the EHT can be switched off or switched on.

The toggle between Coarse and Fine control is a most useful feature. Coarse and Fine control is always related to the currently selected parameters, such as Focus, Brightness, Alignment etc. All parameters which can be adjusted using the mouse can be either performed in Coarse or Fine mouse control. They also scale with the set magnification.

Task 2 Preparing a suitable sample

It is recommended that the sample should contain very small features suitable for imaging at high magnification with high contrast. For example, small metal particles can be added at the corner of a resist sample. Those particles will aid the electron optics optimization which coincides automatically with the optimized beam conditions for patterning.

For this chapter we recommend a small sample, for example a $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ square, with positive resist, e.g. PMMA. You will find this type of sample in the Starter-Kit provided with the instrument.

STEP 1 Use the latex spheres from your EBL Starter-Kit and dip it into the solution. Apply a small drop to the corners of your resist sample.

Although this method might not be adequate for the experienced lithography user, it will be most useful for a novice to gain some experience.

Task 3 Loading and unloading samples

STEP 1 We need to verify if a sample is loaded or not. To check this, use the CCD camera to view inside the vacuum chamber. Click on the Chamber Scope/ Detector Control icon in the column desktop.

Figure 1-5 Selecting the Chamber Scope/ Detector Control icon.

The CCD camera will now display an image. An example is given in the figure below. The image shows the system without sample holder.
A) If the sample holder is in the chamber, you need to unload it. This procedure is described in Step 3.
B) If there is no sample holder in the chamber, the following procedure will guide you to introduce one into the system:

Place the sample holder, with your sample, into the loadlock.
Figure 1-6 CCD Camera view.

Click on the Load Lock icon in the control bar and then on the Load Sample button. This button is marked gray if a sample is already loaded.

Figure 1-7 Load Lock window for sample loading

STEP 3
After the loading procedure is completed, the voltage is switched off. Switch the voltage on again via the Column Control.

Once the acceleration voltage is switched on, the EHT button should show a green check mark.

Check the Home Position. Using the lithography desktop, go to the Coordinates window and check if XYZ are displayed as zero.

Figure 1-8 Coordinates Window showing XYZ and UVW coordinates.

K Coordi... - \square [\times	
- \times	1.289547 mm
- Y:	2.715418 mm
- Z:	0.000 mm
- T:	0.000 mm
U:	1.289547 mm
V	2.715418 mm
W:	25.000 mm

Task 4 Obtaining an image

HINT

Figure 1-9 Coarse/ Fine control.

STEP 1 -

Figure 1-10 Selecting the Scan Speed.

STEP 2

STEP 3

If the bottom line in the column desktop shows Fine (light blue), change it to Coarse (red) by clicking on it once to widen the range available. At the start you might be a long way out of focus and you might therefore expect to see a noisy and gray picture. To obtain an image you need to adjust the column parameters as explained in the following steps.

Select Scan Speed 1 using the column desktop. A fast scan will be produced. During the fast scan, only noise can be seen as the acceleration voltage (EHT) is still switched off.

If the EHT is switched off, click on the small EHT icon in the column desktop in the bottom right corner. A dropdown list box appears. Select EHT ON.

The beam blanker should be in the OFF state. To check this, click at the column icon to the left of the INT icon in the lithography desktop and check if the beam blanker changes the signal during the scan. Leave the beam on.

Figure 1-11 Checking the Beam Blanker status.

STEP $4>$ In addition switch to imaging mode .

Figure 1-12 Imaging mode (IMG)

The next step is to check the acceleration voltage.
Click the Column Control icon in the control bar to open the Column Control window. Select a pre-written parameter set for Aperture, EHT and Working Distance.

Figure 1-13 Setting the Acceleration value

STEP 6 The next step is to adjust brightness and contrast. Click the icon for Brightness and Contrast. The left and middle mouse buttons will now be assigned for controlling brightness and contrast respectively by horizontal mouse movements. This assignment is shown on the bottom line. First, press the left mouse button and move it while pressing it down to adjust the brightness; then use the middle mouse button and the same movement to adjust the contrast. For getting first images a setting of Contrast=Brightness $=50 \%$ will be sufficient.

Figure 1-14 Setting the Brightness and Contrast values.

The left mouse button Left is assigned to brightness control and the middle mouse button Mid is assigned to contrast control.

The mouse movement can be toggled between Fine and Coarse by clicking in this field once.

Click on the Brightness and Contrast icon using the middle mouse button in order to start an automatic Brightness and Contrast optimization. Afterwards click the icon again with the middle mouse button to switch off the automatic optimization.

STEP 7 Now that the Brightness and Contrast have been optimized, we can start to focus onto a surface using a selected magnification of 50x. Click on the Magnification icon using the left mouse button and assign the left and middle mouse buttons to Magnification and Focus Control during horizontal mouse movements. Now you can optimize the focus by pressing the middle mouse button and moving the mouse from left to right or vice versa.

Figure 1-15 Setting the Magnification.

The left mouse button Left is now assigned to Magnification control and the middle mouse button Mid is assigned to Working Distance. The mouse movement can be toggled between Fine and Coarse control.

Please note that focus is related to working distance.

STEP 8

As the sample is now in focus, a higher quality image (lower noise) can be obtained by changing the scan speed to a higher number, as this reduces the scan speed. The pre-defined Scan Speed 1 is the fastest scan speed, whereas the Scan Speed 5 is the slowest scan speed. The user can select the individual scan speed via the Raith EOControl > Scanning tab assigned to the Scan Speed icons.

Select a slower scan speed in order to reduce the noise by clicking the left numbered icons.

Figure 1-16 Setting the Scan Speed.

The Scan Speed can be changed using these icons. The higher the number, the slower the scan speed, the higher the image quality (lower noise).

Clicking on these icons with the middle mouse button will switch imaging to continuous averaging. To get started, middle mouse click on icon $\mathbf{2}$.

Task 5 Finding your sample

STEP

Figure 1-17 Joystick control.

You can use the joystick to drive the stage to the desired position.
Switch on the X and Y buttons in order to illuminate corresponding LEDs. You can now move the stage at variable speed, depending on joystick inclination. The LED on the joystick indicates the corresponding axes, which are now under joystick control.

Move close to your sample but do not move over it, otherwise you would expose the sample.

STEP 2 We can now start to focus onto the sample holder using our selected magnification of 50x. Click on the Magnification icon using the left mouse button to assign the left and middle mouse buttons to magnification and focus. Now you can optimize focus by pressing the middle mouse button and moving the mouse. Mouse movement can be toggled between Fine and Coarse control.

Figure 1-18 Selecting the Focus icon to adjust the focus of the sample.

[^1]

In addition, the speed of stage movement can be doubled by pressing the first left button on the joystick.

If you are operating the RAITH150-TWO system, when the stage is moved to the right, the electron optics image will move to the right. The same is valid for the CCD camera, e.g. the stage is moved to the right, the CCD camera view is moved to right.

If you are operating the e_LINE system, when the stage is moved e.g. to the right, the image will move to the right, but the CCD camera view is 180° rotated, so it will show an apparent move to the left.

STEP 3 Now that you have optimized the focus, you need to locate the sample at low magnification. Click on the Chamber Scope/Detector Control icon to switch back to the electron optics image. Move the lower left corner of your sample into the center of the field of view.

You can turn on the crosshairs, indicating the center of your screen, by clicking on the icon with the centered cross.

As the sample is now in focus, a higher quality image (lower noise) can be obtained by changing the scan speed to a higher number, as this reduces the scan speed. Reduce the scan speed in order to reduce the noise by clicking the left numbered icons. The scan speed can be changed using these icons. The higher the number, the slower the scan speed, the higher the image quality (lower noise).

Figure 1-19 Changing the Scan Speed.

2 E-beam Optimization

AIM

This chapter explains how to optimize the column setting in order to get a good patterning by selecting the correct parameters.

Task 1 Focusing on the sample
Task 2 Aperture alignment
Task 3 Astigmatism correction
Task 4 Further E-beam optimization
Task 5 Creating a spot
Task 6 Checking the leveling limits

Task 1 Focusing on the sample

STEP 1 It is assumed that you have loaded a $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ sample into the system as described in the first chapter. Select a small particle of less than $1 \mu \mathrm{~m}$ on your

 sample.STEP 2 Move the particle into the center of the field by using the joystick.
Figure 2-1 Focusing on a Particle on the sample.

STEP 3 Zoom onto the particle until you seem to lose the focus. Remember that zoom is assigned to the left mouse button after the magnification icon has been selected, as described in detail in chapter 1 .

STEP 4 Refocus onto the particle. Remember that focus is assigned to the middle mouse button.

STEP 5
Zoom in further and readjust the focus.

STEP 6
Repeat the zoom and refocus procedure until no further improvement in focus can be achieved.

Task 2 Aperture alignment

STEP 1
 Open the Raith EO control panel Tools > Go to Control Panel (Ctrl-G)

 and select the Apertures tab.Figure 2-2 Opening the Aperture alignment.

Wobble Amplitude $=1 \%$
\square Beam Blanked

Emission

Fish-Eye ModeHigh Current

STEP 2 Click on Aperture Align, which assigns the left mouse button to the aperture alignment in $X Y$ by moving the mouse in X and Y directions. The assignment is displayed in the status bar at the bottom of the screen.

Figure 2-3 Viewing the Left: Aperture Align X $=-1.3 \%$: Aperture Align $Y=2.0$ \% Mid: $\mathrm{WD}=2.3 \mathrm{~mm}$ Fine 0 Vac: \checkmark Gun: \checkmark EHT: \searrow Status bar.

STEP 3 Go to the Raith EO Control window and select the Aperture tab. Check the checkbox for the Focus Wobble. This will initiate the focus wobble. Its intensity can be varied by the Wobble Amplitude slider bar.

STEP $4>$ Keep the left mouse button pressed and move the mouse in X and Y directions. You can observe the changes by viewing the image and a corresponding movement of the red point in the window. Alternatively, you can place the cursor on the red point and drag it around while keeping the left mouse button pressed. A third alternative for adjustment is using the scroll bars.

Figure 2-4 Performing the Aperture Align procedure.

The key to aperture alignment is to minimize the image shift during the wobble sequence. To achieve this, move the mouse in the X and Y directions while keeping the left mouse button pressed and optimize for lowest image movement.

STEP $5>$ You might be able to improve the aperture alignment even further by repeat-

 ing the same procedure at higher magnification and reduced wobble amplitude.
HINT

If the particle is becoming too large at high magnification, move to a smaller particle and continue the optimization. In order to change the magnification, click on the button Mag/Focus. Do not forget to switch off the Focus Wobble once finished.

Task 3 Astigmatism correction

STEP 1

Figure 2-5 Assigning Stigmation to the mouse buttons.

STEP 2

Click on Stigmation, which assigns the left mouse button to the stigmation alignment. The adjustments are carried out in the same manner as the aperture alignments.

Left: Aperture Align $X=-8.0 \%$: Aperture Align $Y=3.4 \% \mid$ Mid: $\mathrm{WD}=2.3 \mathrm{~mm} \quad$ Fine $O \mid$ Vac: $\checkmark \mid$ Gun: $\checkmark \mid$ EHT:覀

Switch on Focus Wobble in the Stigmation tab of the Raith EO Control by clicking on the corresponding field and selecting a useful amplitude for the current magnification. During the wobble sequence, the particle will be stretched first in one direction and then in the perpendicular direction.

Figure 2-6 Performing the Focus Wobble procedure.

STEP $3>$ Optimize for lowest shape changing of the particle.

Task 4 Further E-beam optimization

For the final optimization of the E-beam, you need to change between Aperture Alignment and Astigmatism Correction several times in order to optimize the setting for high image quality at high magnifications. The final result should be a well resolved image of the particle at a magnification of $300,000 \mathrm{x}$ or higher. If not, create a spot as described in the next task.

HINT

Please note that during aperture alignment we concentrate on the image movement whilst during the stigmation optimization we will concentrate on the shape changes.

STEP $1>$ Perform the Aperture Alignment again at higher magnification and reduced wobble amplitude. In order to change the magnification, click on the button Mag/Focus. Magnification is now assigned to the left mouse button.

STEP 2 Perform the Astigmatism Correction again at a higher magnification.

STEP 3 Continue the alignment optimization without the use of the automatic focus wobble (uncheck Wobble) and use instead alternating Aperture Alignment (left mouse button) and the manual Focus (middle mouse button). The aim is an aperture alignment which avoids image shift during defocusing. This method allows a more precise adjustment than the automatic wobble and is recommended for the final optimization steps.

STEP $4>$ Repeat the same procedure between the optimization of Aperture Alignment and Astigmatism Correction until no further improvement can be achieved.

Task 5 Creating a spot

It is recommended to burn a spot for the final optimization of the aperture alignment and astigmastism correction.

STEP 1 To carry out the final optimization, move the stage slightly away from the area of interest to ensure that a free area of the sample is visible in order to burn the spot.

STEP 2 Click on the Spot icon on the column desktop using the left mouse button to burn a spot for a duration of 3 s . The software will automatically switch to the reduced scan area.

If you were not able to burn a visible spot, click on the middle mouse button which will start the spot mode. Wait for 1 minute while the spot is burned into the sample and click the middle mouse button again to end the spot mode.

Figure 2-7 Selecting the
Spot icon.

STEP 3 Focus now on the spot, move the stage and burn another spot. The new spot should be smaller since the focus has been improved.

HINT
If the spot is not round, apply the aperture alignment and then the astigmatism correction again, using this spot. Using such alternating routines, it is possible to achieve an ideal round spot, which grows within a few seconds of patterning time and shows perfect alignment. The optimization on this spot now provides the optimized conditions for a real patterning nearby.

HINT

An example of a series of spots is shown in the images below to illustrate top and side views.

Figure 2-8 Creating a spot.

Task 6 Checking the leveling limits

It is likely that your sample surface is tilted to the beam. This can be checked by the following steps, but this task is not necessarily required prior to a patterning task.

STEP 1

Switch to a lower magnification and move the stage for a relatively long distance, i.e. 1 mm . Ensure that you notice the direction of movement in order to relocate the previous spots.

STEP 2
Burn another spot and view the result. This spot is now likely to be larger than the previous one, but this time the focus adjustment should be sufficient for the optimization. It should not be necessary to perform the Aperture Alignment and Astigmatism Correction again.

STEP 3
Perform some experiments to establish the stage travel distance, at which you need to refocus the sample surface.

3 Stage Adjustment

Abstract

AIM This chapter describes stage adjustment, which allows navigation with a blanked beam on the sample in order to find a new exposure area without pre-exposing or to find an already exposed and processed area for inspection or multi-layer exposure. The two coordinate systems (XY for the stage and UV for the sample) will be explained in detail, thus permitting the determination of the correct UV sample coordinates independent of how the sample has been mounted on the stage.

The aim of stage adjustment is to find the relationship between XY and UV with respect to shift, scaling and rotation in order to perform a permanent coordinate transformation between both systems.

In this chapter we will explain in tasks 1,2 and 3 how to set up a coordinate system on an sample. In task 4 we will explain how to navigate on this.

Task 1 Angle correction
Task 2 Origin correction
Task 3 Adjust W
Task 4 Digital addressing

Task 1 Angle correction

STEP 1

STEP 2

On the lithography desktop, open the window Adjust UVW by clicking on the corresponding Adjustment icon in the control bar. Ensure that it is in mode Global; if it is in mode Local, click on the button once to change it. Click on the Angle Correction tab.

STEP 3

In the coordinate window the actual XY coordinates are displayed. Click on the Pipette icon (Read XY position) next to the Flag 1 in Adjust UVW to read in the coordinates. The coordinates will be displayed in the window.

Figure 3-1 Adjust
UVW (Global) window to read in the coordinates.

Coordinates	13.687000 mm
X:	24.524000 mm
$Y:$	0.000 mm
Z:	13.931543 mm
U:	24.385911 mm
V:	25.000 mm
W:	

Once the coordinates are displayed, switch back to low magnification and move the stage a few millimeters along the sample edge to the lower right corner. Move the stage so that the cross hair is situated above the lower right corner. Click on the Pipette icon next to Flag 2 to read in the second position. The second set of coordinates will now be displayed in the window.

STEP 5

Click on Adjust to activate the angle correction.
This angle will now compensate the difference between the sample surface and the stage axes.

Task 2 Origin correction

The sample can be placed at any location on the sample holder. To compensate for the different origins of XY and UV, the origin correction can be applied.

STEP $1>$ Ensure that the beam is blanked.

STEP 2 Within the Angle Correction tab, click on the Flash icon of the first coordinates pair to move back to the lower left corner.

STEP 3 Click on the tab Origin Correction and enter 0 for both the U and V values, then click on Adjust. The lower left corner is now defined as the origin of this UV coordinate system. It is now possible to move the stage to any point on the sample using UV coordinates.

Figure 3-2 Performing the Origin Correction.

HINT

The adjustment via angle and origin is mostly used for an empty sample.

Task 3 Adjust W

STEP 1

Make sure that your sample is still in focus by burning a new spot.

STEP 2

Click on the Adjust W tab in the Adjust UVW (Global) window. Click the Pipette icon to read in the working distance. Then click on Adjust to confirm.

Figure 3-3 Adjust W coordinate.

Task 4 Digital addressing

Digital addressing aids navigation on the sample. Digital addressing means that the user can enter a digital location as coordinates and the stage will drive to this location. This task is not vital for the patterning sequence.

In tasks 1-3 we have established a coordinate system in UVW, which we can now use to address certain points on the sample. This will be explained in this task.

Please note that it is not required to perform this task.

STEP 1
gure 3-4 Stage Control window to address the stage position.

Click on the Stage Control icon in the control bar. Click on the Drive tab. Click on Base UV and Position absolute. Now you can address the stage to any position in UV. W describes the working distance, which is directly related to the stage height Z. If you do not want to change the stage height (working distance) leave the corresponding line blank. After clicking Start, the stage will move to the sample position entered. In the coordinates window you will see the addressed sample position and the corresponding position in XYZ.

STEP 2
 Change the Base to XY, address a point in XY coordinates and monitor the

 coordinates window. The calculated corresponding UV coordinates are displayed continuously, while the entered XY coordinate is being addressed.Figure 3-5 Changing the
Coordinates in XY.

STEP 3 Move the stage relative to the existing position by selecting relative. Select the Base of your choice, either UV or XY.

STEP 4 In the Command line it is possible to address just one axis absolutely or relatively by entering the required position or distance followed by the letter of the axis.

Type in small letters ($\mathrm{x}, \mathrm{y}, \mathrm{u}$ or v) for absolute positioning and capital letters ($\mathrm{X}, \mathrm{Y}, \mathrm{U}$ or V) for relative positioning. If relative addressing is selected, the movement command can be repeated in order to move stepwise in equal distances along the sample.

STEP 5

It is also possible to go to a stored position, via the Stage Control > Positions tab. In this example, the stored position is the Faraday cup. To edit a position, you can either enter the required position or you can read the actual position, if the stage is already at the desired position.

If the stage is already at the specified position, click on Edit. A new dialog box, Edit User Defined Position, will open. Click on Read to read in the coordinates, and click on OK to store the new coordinates.

Figure 3-6 Moving to a stored position in the Edit User Defined Position dialog box.

For 3-Points adjustment, please refer to Chapter 8 (Mix and Match Patterning), Task 3.

4 Writefield Alignment

Abstract

AIM This chapter explains the alignment procedure for an exact writing field. In the previous chapters the image scan has been under the control of the column software. In order to perform lithography, the beam has to be controlled via the lithography software. For this a Writefield alignment has to be performed. The procedure described in this chapter via Writefield alignment is required for stitching and for any patterning on a bare sample. The alignment of the field size to the previously written marks for multi-layer lithography will be explained in a later chapter.

Writefield alignment is a very important task, as it aligns the Writefield to the sample coordinates UV. In chapter 3, we performed a point navigation in UV, but the image via the column software was still parallel to XY at a certain point and non parallel to UV. For pattern stitching it is essential that the Writefield is exactly parallel to UV and this can be achieved with Align Write procedures.

4.1 Writefield Alignment (Standard) Procedure

Chapter 4.1 explains the standard procedure of Writefield alignment.

Task 1 Locating a mark or particle
 Task 2 Defining the alignment procedure
 Task 3 Executing the alignment procedure manually
 Task 4 Setting up the automated alignment
 Task 5 Checking the precision of the alignment

4.2 Writefield Alignment using FBMS and Beam Tracking (Options)

Chapter 4.2 is only applicable to users who have the option for FBMS and Beam Tracking installed on their Turnkey System.

> Task 1 Continue with located particle Task 2 Defining the alignment procedure Task 3 Executing the alignment procedure
> Task 4 Setting up the automated alignment Task 5 Checking the precision of the alignment

4.1 Writefield Alignment Procedure

Task 1 Locating a mark or particle

STEP 1 Move the stage back to the lower left corner of the sample. Please note that you can use the Flash icon in the Adjust UV window on the origin correction tab.

STEP 2 Locate a small particle which can be used as a mark for the following tasks.

STEP 3

Figure 4-1 Open the Writefield Manager window.

Choose the Writefield Manager icon from the control bar. A list of prewritten Magnification and Field size parameters will be displayed. Select the Writefield size, in this case $100 \mu \mathrm{~m}$. Click on the Set New Writefield icon to activate that line and to set the corresponding magnification. As a default, initial correction values will be taken from a database, the checkbox Database values is checked by default.
$\begin{array}{ll}\text { Select the Writefield Control } & \text { Initial corrections will be taken from the } \\ \text { icon from the control bar. } & \text { Database values. }\end{array}$

Select the Magnification and Field size.

Task 2 Defining the alignment procedure

The Writefield needs to be calibrated and rotated. This procedure is called Writefield Alignment. From the difference between the detected position in comparison to the ideal position, it is possible to calculate the scaling, shift and rotation of the Writefield. Within the scan manager, all the parameters of such a procedure are stored and can be recalled for later use.

STEP $1>$ The Scan Manager window opens automatically when the Writefiled Control icon is selected from the control bar.

Figure 4-2 Go to Scan Manager window.

STEP 2

Figure 4-3 Select
Manual procedure.
Double click on Writefield Alignment Procedures and select Manual from the sub-procedure menu.

If a suitable sub-procedure is already available, task 2 is complete and you can continue with task 3 .

STEP 4

Figure 4-4 Enter the values in the Scan properties window.

If no suitable sub-procedure is available, or you would like to edit it, double click on the pre-defined alignment procedure. A new dialog box, Scan properties, will be displayed. You can edit the parameter values and save it by clicking OK. Select New, which will create a new sub-procedure for Manual. The Scan properties window for the chosen procedure will automatically open.

It is recommended to choose $\mathbf{1 6}$ for Point average in order to slow down the beam to avoid any dynamic effects.

HINT

Finding the suitable scan size is dependent on several factors such as:

- For a newly defined Writefield, it is recommended to start with large scan sizes. We have selected a $100 \mu \mathrm{~m}$ Writefield. The scan size should be of the order of $25 \mu \mathrm{~m}$.
- For a Writefield which has been used successfully beforehand, a smaller scan size can be used. Suitable scan sizes can be in the range of several $\mu \mathrm{m}$, e.g. $10 \mu \mathrm{~m}$.

It is recommended to rename the manual Writefield procedure to include the Writefield size in the title. Right mouse click opens a context menu. Select Rename and enter the new name. This will distinguish this procedure from other Writefield procedures of different sizes.

We will assume that no sub-procedure is available to explain the steps.
Otherwise please continue with Task 3.

When changing the values, you must be careful about the correlation between the parameters.
Step size x No of points $=$ scan size
If this correlation cannot be fulfilled, the entered value is non-valid.

STEP 5
Choose the Mark procedure tab. Check the Mark sequence as shown in the example. For Placement parameters, enter $37.450 \mu \mathrm{~m}$ in U and V.

Figure 4-5 Mark Procedure parameters.

STEP 6
 If you have obtained a noisy image, select the Post Processing tab.

 Choose the Edit icon which opens up an Image Matrix Filter dialog.Select a Filter from the dropdown list or create a new one (see Software Reference manual). Confirm with OK.

Figure 4-6 Post Processing tab.

Task 3 Executing the alignment procedure manually

We will now execute the alignment procedure, which will scan the three mark areas to determine the difference between the real and ideal positions.

STEP 1

Highlight the procedure in the Scan Manager window, then press F9. A positionlist will be opened and executed automatically.

Figure 4-7 Highlight the procedure in Scan Manager window.

Scan Manager 뷴 (2)		
	Beam tracking alignment procedures Calibration Scan GDSII Writefield Mark Scans Image Linescans Images Linescans Writefield Alignment Procedures Automatic with Images 100 um W/F - Auto ALW/F 1 um marks 100 um WF • Auto ALWF 10 um marks Automatic with Linescans \dagger G ${ }^{\circ}$ GDSII Layer Based Mark Scans Manual 100 um WF - Manual ALWF 1 um marks 100 um WF - Manual ALWF 25 um marks 100 um WF - Manual ALWF 5 um marks	\wedge

STEP 2 Firstly, the stage will move $37.45 \mu \mathrm{~m}$ in U and V towards the first corner and an image will be scanned at the reference point. The image will cover a $25 \mu \mathrm{~m}$ x $25 \mu \mathrm{~m}$ square. The Mark window will be automatically opened, in which the particle should be visible.
The green cross shows the position at which the mark is expected.

If no mark shows up, confirm the Continue prompt. Repeat the task, now choosing a larger scan size.

STEP 3 The green cross, displayed in the center of the image, defines where the special mark feature is expected. At this stage, the mark will probably not be at the center, but it can now be defined manually. To define the position of the mark, keep the Ctrl key and the left mouse button pressed while moving the mouse cursor to the required position. Once you have reached the new position, release the Ctrl button and the mouse button and a blue cross will be displayed at the selected position.

Figure 4-8 Executing the Positionlist procedure.

STEP 4
Click on Continue and the stage will move into the next corner to perform the same mark alignment. These steps must be repeated for each mark.

Figure 4-9 Macro execution paused while stage moves to new position.

STEP 5 At the end of the procedure a dialog window opens and the Writefield cor-

 rection must be confirmed. Note the values of the Writefield Alignment for Zoom, Shift and Rotation in UV and confirm if the values are acceptable.Figure 4-10 Confirming the values for the Writefield correction.

The left column of numbers shows the alignment parameters before alignment. Here the scaling factors are around 0.96 . Due to the alignment procedure, new alignment parameters have been calculated as shown in the right column. By accepting, these values will then be sent to the pattern generator and displayed on the left side.

If an alignment has already been carried out beforehand, the new values for Zoom will be multiplied, whereas the new values for Shift and Rotation are added to the values displayed in the gray field.

Abstract

STEP 6 Go back to the Scan Manager and repeat this procedure several times by using smaller mark fields from iteration to iteration. In addition, the placement should be moved closer to the corner of the Writefield, e.g. $45 \mu \mathrm{~m}$. The previous alignment parameters will now be used for the imaging, therefore the marks will be already positioned close to the center of the images. The final correction parameters in the Writefield Alignment window should be very small or close to 1 for the zoom.

STEP 7 Activate the Writefield Manager window and click on the Save icon. The alignment parameters will be saved together with the magnification and the field size. Whenever you wish to call up this setting again, the correct field alignment will have been stored and you only need to perform the final optimization steps for the alignment.

Task 4 Setting up the automated alignment procedure

Once we have performed an alignment procedure manually, with decreasing scan sizes, the final task is now to perform an automated alignment procedure.

STEP 1
 In the Scan Manager window double click on AlignWriteField Procedures

 and then double click on Automatic with Images.Figure 4-11 Selecting an Automated Procedure.

Double click on the procedure $\mathbf{1 0 0} \boldsymbol{\mu} \mathrm{m}$ WF-Auto ALWF $1 \mu \mathrm{~m}$ marks to open the Scan Properties window.

STEP 2 Select the Main tab and enter the value 16 for the Point average.

Figure 4-12 The Main tab in the Scan properties window.

It is recommended that the No of points is either 256, 512, 1024 etc, otherwise the Writefield Alignment procedure might be slow.

STEP $3>$ Select the Mark procedure tab. The Marked sequence is displayed. Select all eight marks.

It is important that the placement does not exceed 80% of the overall Writefield size. For example, the placement for a $100 \mu \mathrm{~m}$ Writefield should be a maximum of $40 \mu \mathrm{~m}$. The distance of $40 \mu \mathrm{~m}$ is measured in both directions from the center, yielding a total of $80 \mu \mathrm{~m}$, which is equal to 80% of the 100 $\mu \mathrm{m}$ Writefield.

STEP 4
Select the Advanced tab and make sure that the Create reference image first option is checked.

Figure 4-14 Selecting
an Automated Procedure.

Finally, confirm with OK.

STEP 5 To execute an automated Writefield alignment, click in the Scan Manager window on the required procedure name to highlight it. Press F9 on the keyboard to execute the process.

Figure 4-15 Executing the Automated Writefield alignment.

Highlight the required procedure, then press F9 to execute the procedure.

After the procedure is highlighted in the Scan Manager window, F9 on the keyboard will automatically open the positionlist and execute the alignment procedure.

Task 5 Checking the precision of the alignment procedure

STEP 1

Figure 4-16 Opening the RAITH Protocol.

After you have completed the automated alignment procedure, it is highly recommended to open the RAITH protocol and check the variance within the last few alignment procedures.

Opening the RAITH protocol to view the variance.
To open the Protocol, go to Windows start $>$ Programs $>$ Raith $>$ Raith Protocol Tool

For example, if you are using a $100 \mu \mathrm{~m}$ Writefield, you can check the alignment precision in the fields zoom \mathbf{U} and zoom \mathbf{V}.

Figure 4-17 Checking the values in the Raith Protocol Tool.

Check the values for zoom U and zoom V.

In our example, excellent precision has been achieved. Zoom U shows five decimal places. The variance should be within the last decimal place. For example, if Zoom U shows a value of 1.00001 , then the variance would only be 10 nm , which is an excellent value in a $100 \mu \mathrm{~m}$ field.

For some applications, you may not need such high precision in the Writefield Alignment procedure.

4.2 Writefield Alignment using FBMS and Beam Tracking

FBMS and Beam Tracking are options. If they are not installed, please continue with the next chapter.

Task 1 Continue with located particles

Continue with the located particles, as described in 4.1, Standard Writefield Alignment.

It is important not to change the column settings.

Task 2 Defining the alignment procedure

Once the alignment procedures have been completed, the calibrated beam can now be used to define the stage movements and so calibrate beam tracking.

For the beam tracking calibration, the previous Writefield calibration is required. This procedure is comparable to the procedure for the Writefield alignment, using a particle for calibration of scaling, shift and rotation. In the Scan Manager, the parameters for this procedure can be stored and recalled for later use.

In this procedure, the calibrated beam remains fixed and the stage will be moved instead. This calibration procedure avoids stitching of large scale patterns.

STEP $1>$ Go to the Scan Manager as described in Chapter 4.1, The Scan Manager window opens automatically when the Writefield Control icon is selected in the control bar.

STEP 2 Select the required pre-defined Alignment Procedure.

Figure 4-18 Select the Manual BTC procedure.

Beam tracking speeds up the writing procedure. For example, if you wish to stitch several fields, with the stage moving to a new position each time, there is normally a waiting time (delay) for final precise positioning of the stage.

Figure 4-19 The Manual BTC procedure file is displayed in the Scan properties window.

If you select beam tracking, the software automatically calculates the movement of the stage and compensates the movement with a counter-movement of the beam. The delay is thus not required for the new area and writing can start immediately. The whole procedure is therefore much quicker.

If you choose to use FBMS, the feature will allow you to write large fields without stitching. It is still of advantage to use beam tracking, as this will eliminate the waiting (delay) time for the stage after movements, since the software will compensate for final precise positioning of the stage after the stage has been driven to its new coordinates.

STEP 3 Choose the Mark procedure tab. Check the Mark sequence as shown in the example. For the Placement parameter, enter $37.450 \mu \mathrm{~m}$ in U and V .

Figure 4-20 The Mark procedure tab in Scan properties window.

STEP $4>$ If you have obtained a noisy image, select the Post Processing tab. Choose the Edit icon, which opens up an Image Matrix Filter dialog. Select a Filter from the dropdown list or create a new one (see Software Reference manual). Confirm with OK.

Task 3 Executing the alignment procedure

Follow the description of Task 3 in chapter 4.1.

Task 4 Setting up the automated alignment

Follow the description of Task 4 in chapter 4.1.

Task 5 Checking the precision of the alignment

Follow the description of Task 5 in chapter 4.1.

5 General Pattern Design

AIM
This chapter gives an overview of the different design features by using the internal GDSII editor. It is also possible to import a pattern from other editors such as AutoCAD ${ }^{\mathrm{TM}}$, but it is recommended to use the internal editor, mainly because it allows you to assign a different dose to each feature in each GDSII layer.
Task 1 Creating a design
Task 2 Pattern design via toolbox
Task 3 Modifying structures
Task 4 Measuring a distance
Task 5 Placing of elements in different layers
Task 6 Saving, deleting and copying of structures
Task 7 Applying varying dose factors

Task 1 Creating a design

STEP 1

Figure 5-1 Opening GIDSIII Database to create a new design.

To open the GDSII Database window, click on the corresponding Design icon in the control bar. To create a new design, click on the corresponding New icon.

A new window, Create GDSII Database, will be displayed. Enter the file name Design and click the Save button. After saving, you will get an empty GSDII Database with the name Design.csf.

STEP 2 The Design.csf file is now displayed in the GDSII Database window.

To create a new structure, click on the corresponding Create a New Structure icon.

Figure 5-2 Creating a New Structure.

Now another dialog box will open, in which you can define the name of the first structure, e.g. Structure1. After confirming, this first structure will appear in the database. At the same time the GDSII Editor will open a default size of $100 \mu \mathrm{~m}$ square.

Figure 5-3 Opening the GDSII Editor.

At the top of the Editor a number of pieces of information are given in the status bar:
*: A star in the first field highlights unconfirmed changes.
UV: The actual coordinates of the cursor position in U,V.
Li The layer chosen for design is displayed. The layer can be changed via Add $>$ Preset $>$ Layer.
S: The selected step size is displayed. The cursor step size can be changed via/ and * keys. At the moment the step size is 1 nm , which means that the cursor can only be located at positions with integer nanometres, leading to a corresponding invisible design grid.
Cmd: The currently used command is displayed. For example, after clicking on Add $>$ Box, the command will show Add box.

Task 2 Pattern design via toolbox

STEP 1
 Open the GDSII Toolbox via the small blue icon in the top right corner of the

 design field (illustrating a toolbox).Figure 5-4 Open the GIDSIII Toollbox.

STEP 2 The icons of the tool box give easy access to the main design functions.
Figure 5-5 Toolbox icons functions.

STEP 3 Select the Rectangle icon. The first mouse click defines one corner of the rectangle and the second mouse click defines the opposite corner. Once the rectangles are completed, choose the red cross icon or press Esc key to cancel the active command.

Figure 5-6 Designing a Rectangle.

STEP $4>$ Draw polygons by activating the corresponding Polygon icon. Each corner will be defined by a mouse click. During the drawing process the pattern is always displayed by a click of the left mouse, assuming the next mouse click would be the final one. Use the right mouse button or the Return key for the last corner. Once the polygons are completed, choose the red cross icon or press the Esc key to cancel the active command.

Figure 5-7 Designing a Polygon.

During precise pattern designs you may like to work in a zoomed area. You can zoom in and out during the design by using the + and - key or by using the mouse wheel.

STEP 5

Draw open paths in the same way. An open path could be a Single Pixel Line, i.e. no area, or it could have a width defining an area. A double click into any designed structure opens a window with all details. In case of an open path you can change all corner locations digitally, add or delete points, define the dose and the layer and finally you can define the width. A line width of zero defines a single pixel line.

Figure 5-8 Designing an
Open Path.

Place dots after clicking the corresponding Dots icon, one with each mouse click.

Figure 5-9 Placing Dots Eadisi Editor - Designn:Structure into the structure.

Use all remaining icons of the Toolbox to familiarize yourself with the functions. The icons are mostly self explanatory.

Save the pattern via File > Save and Close. During the work you can use Save or press Ctrl S from time to time. Any unsaved work is highlighted by the red star in the upper left corner of the GDSII Editor window.

HINT
You can Undo/Redo the last changes by using the corresponding commands in the Edit menu or Ctrl Z and Ctrl Y respectively.

Task 3 Modifying structures

STEP 1
 The next step is to create a new structure in the same database called

 Multiple_structures. Save and close this window.To edit a pattern, select it from the list, as shown here for Multiple_structures and then click the Edit button.

Figure 5-10 Modifying structures in GDSIII
Database.

STEP 2

Open the former pattern Structure1 via the button Edit and click once at the polygon. Once it is selected, the corners are marked by tiny squares.

STEP 3 Choose Edit > Copy. Now open the new design field in the Editor Multiple_structures. Choose Edit > Paste.

HINT
It is also possible to copy groups of elements from one structure into another structure by using Copy and Paste via the menu Edit. To select more than one element, go to Edit, Select or Unselect and choose one of the commands from the cascading menu.

STEP 4

Use the corresponding tool button for Structure reference to move this structure into the center of the lower left quadrant.

Figure 5-11 Using the Structure reference icon.

STEP $5>$ Choose Modify $>$ Duplicate $>$ Matrix, which will open up the following dialog box. Enter the values as shown.

Figure 5-12
Duplicated structures.

STEP 6

Figure 5-13 Selecting different Dose Values.

The result is shown in the figure below. To inspect the dose choose Options > Show dose. You will find that all patterns have the same color. To change the relationship between dose and color, choose Options > Dose colors and a dialog window will open. Choose the Pipette icon. This will update the visible dose range. Choose Apply to update the GDSII window and confirm with OK.

The Show dose option is a useful tool to check the exposure doses prior to the actual exposure test.

Each individual structure can be edited by a double click, which opens a dialog box, where the UV coordinates, the layer and the dose can be viewed and edited.

Task 4 Measuring a distance

STEP 1

To measure any distance within the design field, click on the corresponding icon in the toolbox and move, while keeping the mouse button pressed, to the other, opposite corner. An information window will appear, in which some dimensions are displayed digitally.

Figure 5-14
Measuring a distance

Task 5 Placing of elements in different layers

STEP 1
 Figure 5-15 Creating

Create a new structure, we have named it here Different_layers. Click the
Layer icon next to the toolbox. A dialog window will open, showing the existing layers. Click Edit and a new dialog window will open. Different layers.

STEP 2 To add a layer, choose the layer number from the dropdown list box on the right hand side and choose the Add a Layer icon next to it, which will update the table in the Layer Properties window.

Figure 5-16 Add a
Layer to the structure.

The Layer Properties window will now show the new layer.

STEP 3 Enter a name for the new layer, e.g. Layer Demo1. You should now define further properties of this layer. You can change the color of the Border and Fill by moving the mouse to the new color and pressing the left and then right mouse buttons respectively.

STEP 4
 Repeat the last two steps and add Layer 7. In our example we have modified

 the pattern as shown.Figure 5-17 Add a New Layer.

STEP 5
Make these layers visible in the GDSII layer window by clicking on the Apply button.

Figure 5-18 Selecting the GIDSIII Layer in normal window.

GDSII Layer	Q
063: Manual marks	
061: Automatic marks	
007: Layer Demo 2	
001: Layer Demo 1	
000: Layer 0	

STEP 6 Choose OK and confirm with Yes to save the changes.

STEP 7 The active layer is displayed in the top of the GDSII Editor window, in our example layer 0 . Place a rectangle in this layer.

STEP 8
Choose Add $>$ Preset $>$ Layer $>$ Show All from the dialog window. Choose Layer 1 and confirm with OK. Layer 1 is now the active layer and will be displayed in the status bar.

STEP 9
 Place another a rectangle in the active layer.

STEP 10 Make Layer 7 the active layer and place another rectangle in layer 7. Click on the Filling icon in the toolbox to show the result.

Figure 5-19 Creating an

Save and Close the test structure.

Task 6 Saving, deleting and copying of structures

STEP 1

Saving of structures is possible via File > Save or Save and Close as before.

STEP 2

An existing structure within a database can be deleted while highlighted via Edit > Delete.

STEP 3

A structure can be copied within the same database while highlighted via Edit > Duplicate, which is useful for various modifications.

STEP $4>$ It is also possible to Rename a structure.

STEP 5

Sometimes it is also useful to make a copy of the total database, which can be done via File > Save As.

Figure 5-20 GIDSII Database.

Task 7 Applying varying dose factors

Optimum resolution requires optimum exposure dose. The next steps will explain the design of a resolution test pattern, which will cover a wide range of doses. Please note that a similar structure is already designed and saved within the demo structure.

STEP 1

Select GDSII Database, select the New icon to create a new design enter the filename ResTest and click on Save.
Figure 5-21 Creating a new structure in GDSIII Database.

STEP 2

To create a new structure, click on the corresponding Create a New Structure icon. Enter filename RES and click on OK. The GDSII Editor window opens automatically.

STEP 3

To select a working area, click on the working area icon. Define a working area of $400 \mu \mathrm{~m}$ for both U and V and save it.

STEP 4

Figure 5-22 Zoom function to View Window.

Choose View > Zoom > Active working area from the menu bar.

Select the Rectangle icon in the toolbox and draw one rectangle.

Cancel the repeating command by pressing the Esc key.

Double click inside the rectangle to edit the parameters. Enter the coordinates 0 and 4 for U and 0 and 100 for V . This creates a rectangle with a length of $100 \mu \mathrm{~m}$ and a width of $4 \mu \mathrm{~m}$.

Double click inside the rectangle to edit the parameters. The Edit Rectangle dialog box will open.

STEP 8

Figure 5-24 Duplicate
Elements.

STEP 9

The rectangle has now been repeated 4 times leading to a grid of equal rectangles and spaces with $4 \mu \mathrm{~m}$ width.

Select the Rectangle icon in the GDSII toolbox and draw another rectangle. Click on the Red Cross icon (or Esc key) to cancel the repeat command. Double click inside the rectangle and enter the following coordinates:

U 0 and $2 \mu \mathrm{~m}$
V 150 and $250 \mu \mathrm{~m}$
Layer 0 and Dose 1 .
Click on OK.
Figure 5-25 Edit
Rectangle.

STEP 11

Choose Modify $>$ Duplicate $>$ Matrix. Matrix size is 8 for U and 1 for V , stepsize 4 for U and dose scaling is 1 . Click on $\mathbf{O K}$.

The width of the lines as well as the distance between them is now only half compared to the previous grid.

Figure 5-26 Duplicate Elements parameters.

STEP 12
Select the Rectangle icon in the GDSII toolbox and draw another rectangle. Click on the Red cross icon (or Esc key) to cancel the repeat command. Double click inside the rectangle and enter the following coordinates:

U 0 and $1 \mu \mathrm{~m}$
V 300 and $400 \mu \mathrm{~m}$
Layer 0 and Dose 1 .

Figure 5-27 Edit
Rectangle parameters.

Enter the parameters for the rectangle.

STEP 13

Choose Modify > Duplicate > Matrix. Matrix size is 16 for U and 1 for V , stepsize 2 for U and Dose scaling is 1. Click on OK.

The periodicity of the grid is now only half compared to the previous grid and only a quarter, compared to the first grid.

We have now designed three grids each with rectangles of equal width and spaces. In each of the three grids the width of the rectangles and gaps has been selected to be $4 \mu \mathrm{~m}, 2 \mu \mathrm{~m}$ and $1 \mu \mathrm{~m}$ respectively.

Figure 5-28 Altering the Matrix size of the elements for duplication.

STEP 14 Choose Edit $>$ Select $>$ All, from the menu bar.

STEP 15 Choose Modify $>$ Duplicate $>$ Matrix. Matrix size is 10 for U and 1 for V, stepsize 40 for U and 1 for V , Dose scaling is 1.2 and select multiply. Click on OK.

Figure 5-29 Altering the
Dose scaling value.

The line structure has now been duplicated, filling the complete working area. The different spacing from row to row can easily be observed.

STEP 16 Choose Options $>$ Show Dose. The doses applied are now displayed in different color codings. Choose Options $>$ Dose Colors and update using the Pipette icon, then select Apply.

The design of the resolution pattern is now completed within a $400 \mu \mathrm{~m}$ field.

STEP $17 \quad$ Choose File > Save and Close.

Figure 5-30 Saving the structure.

6 Advanced Pattern Design

AIM

In the previous chapter, we learned how to multiply structures within a matrix so that each structure could be assigned another dose. This method can lead to patterns of a large file size. Using the hierarchy function, the pattern file size will remain small and it also simplifies the creation of multiple structures.

6.1 Advanced Pattern Design (Standard)

Chapter 6.1 explains how to design an advanced pattern.
Task 1 Design using hierarchy
Task 2 Studying chessy.csf

6.2 Advanced Pattern Design using FBMS (Option)

Chapter 6.2 is only applicable to users who have the FBMS option installed on their Turnkey System.

Task 1 Designing FBMS elements

6.1 Advanced Pattern Design

Task 1 Design using hierarchy

STEP 1

Create a new GDSII Database file and name it Hierarchy. Then create a Structure and name it Cell1. The GDSII Editor will now open automatically, so that you can place several elements within the field of approximately $100 \mu \mathrm{~m}$. Save the structure and close the Editor.

Figure 6-1 Creating a Hierarchy structure.

STEP 2

Figure 6-2 The New Structure Reference Properties window.

STEP $3-$ Click on the downward arrow next to the Name field and select a structure from the dropdown list. In our example there is only Cell1 available. At the bottom of the window you can enter the Magnification, Angle, Column, Rows as well as the Spacing in U and V. Once you have entered all parameters, as shown in the example, click on OK to create a new Structure Reference. You can now place this new structure anywhere in the pattern by mouse click. Press Escape to place the structure only once.

STEP 4

After finishing placement of structure reference, no pattern will be displayed. Instead it shows a red box with the name Cell1[6][7]. This naming structure indicates that Cell 1 has been repeated in 6 columns and 7 rows. To view the full pattern, go to View $>$ Hierarchy and select level 1 or higher. A structure similar to the figure will be shown.

Figure 6-3 Re-open the Hierarchy structure.

STEP 5

Figure 6-4 Text
Properties window.
The parameters for the Text properties can be entered.

STEP 6
There is a wider variety of command strings available for other formats or variables, which are described in more detail in the Software Reference Manual. In addition, you can enter further Parameters for the Text such as the Position in U and V, the Layer, the Height, Width and Dose. After you have entered your parameters, click on $\mathbf{O K}$ and the current time will be displayed. Save the structure and close the Editor.

STEP 7

Figure 6-5 Inserting pre-designed structure into the GIDSIII Editor.

Create a new structure with the name Example. In this new structure we will insert the structures designed earlier.

STEP 8
Click on the Structure Reference icon and insert Matrix1, Cell1 (5 times enlarged) and Time (10 times enlarged) within the structure Example. Make sure to set Columns and Rows to 1 . Select hierarchy level 2 or higher to resolve the pattern containing the elements of structure cell 1 .

Figure 6-6 Selecting the Hierarchy level.

Task 2 Studying chessy.csf

STEP 1

Figure 6-7 Studying chessy in the GDSIII Viewer.

Now open the pattern S20 using the GDSII Viewer and select the Fill icon. This pattern shows the next hierarchy level, where two matrices are shown. Each matrix contains a 5×5 pattern S 2 . Select the hierarchy level 1 to resolve the pattern in order to view the single squares.
Figure 6-8 Selecting different Hierarchy levels for viewing.

Open the file Chessy.csf.
Chessy is an ideal example to study the design at various hierarchy levels. Open the structure $\mathbf{S 2}$ using the GDSII Viewer and select the Fill icon. The GDSII Viewer will now display the design within a $2 \mu \mathrm{~m}$ field covering just 2 squares of $1 \mu \mathrm{~m}$ size.

STEP 2

STEP 3

Now open the pattern $\mathbf{S 2 0 0}$, this will fill a writing field of $200 \mu \mathrm{~m}$. Two matrices are shown, each containing a $5 \times 5 \mathrm{~S} 20$ pattern. If you select the hierarchy level 1, only the S2 matrices are shown as displayed in the figure below. In order to resolve the single square, you now need to select hierarchy level 2.

Figure 6-9 Studying a different pattern in the GIDSII Viewer.

STEP 4 Now open the pattern Mark, it consists of just 2 rectangles forming an Lshape. Within the pattern S200w there are structure references to S200 and two references to Mark. One mark has been rotated by 180 degrees before it was defined as the structure reference. Pattern S200w is shown below. It can only be resolved by a hierarchy level of 3 or higher.

Figure 6-10 Studying the pre-defined pattern Mark.

The same process of hierarchy levels design can be continued from one hierarchy level to the next. For example, the pattern S1000w already includes 125,000 squares. Even though the total database Chessy.csf, which utilizes a hierarchical design, has a file size of only 1 KB , the same structures without hierarchy levels would require approximately 9 MB .

6.2 Advanced Pattern Design using FBMS

If you do not have the FBMS option installed, you can proceed straight to the next chapter.

Task 1 Designing FBMS elements

It is possible for the user to mix standard GDSII elements without FBMS, together with elements in which the FBMS technique is used.

STEP $1>$ To design FBMS elements in the GDSII structure, you can choose between a path or circle, e.g. Add $>$ FBMS $>$ Circle.

Figure 6-11 Designing FBMS elements.

To insert a path or a circle, click on either Path or Circle in the Add menu, then click into the GDSII Editor at the position you wish to place the structure.

HINT

 The pattern design is exactly the same as in the standard version.
HINT

FBMS is particularly useful for users who want to create large designs without the use of stitching.

The limitation of FBMS is that due to the movement of the stage, additional periodic non-linear components can be introduced to the structure.

HINT

FBMS can be interspersed with standard structures in the same structure. When the procedure is executed, the standard structures will be exposed first and then the FBMS structures.
In this way, the user has the freedom to choose the speed advantages of the FBMS patterning, as well as the higher accuracy of the standard structure.

7 Patterning

AIM

The aim of this chapter is to guide the user through the steps needed to carry out a patterning task.

7.1 Patterning (Standard)

Chapter 7.1 explains the patterning for a standard pattern.

Task 1 Familiarization with demo pattern
 Task 2 Measuring the beam current
 Task 3 Patterning
 Task 4 Developing the sample
 Task 5 Multiple patterning

7.2 Patterning for FBMS Elements (Option)

Chapter 7.2 is only applicable if the option for FBMS is installed on the Turnkey system.

Task 1 Patterning parameters for FBMS

7.1 Patterning

Task 1 Familiarization with demo pattern

STEP 1

Please note that you can go directly to Task 2 if you are already familiar with the demo pattern.

Click on the Design icon in the control bar to open the GDSII Database. Then click on the Open icon to open another GDSII data file. A dialog box opens with a list of file names and folder options. Select
Demo.csf.
Figure 7-1 Opening the Demo Pattern.

STEP 2 Highlight the pattern Chip, then double click on it to open the Chip pattern in the GDSII Viewer. The GDSII Viewer will now display the hierarchical structure of the selected pattern.

Figure 7-2 Studying the pattern Chip.

STEP 3
 While the viewer is activated, choose View > Hierarchy > Max from the

 menu bar.Figure 7-3 Select
Hierarchy via the menu bar.

The full structure is now displayed, showing various test patterns, as described in detail within Raith_Demo_Pattern.pdf, which is located in each GDSII folder of every user.
System route User > GDSII > Raith_Demo_Pattern.pdf.
Figure 7-4 Displaying the full structure in the GIDSIII Viewer.

Task 2 Measuring the beam current

STEP 1 Open the Stage Control window by clicking the corresponding icon on the

 control bar and drive to one of the Faraday cups. Its position may already be stored as one of the Positions.Figure 7-5 Opening the Stage Control window.

STEP 2

When the stage is at the Faraday cup, toggle the beamblanker to switch on the beam. In the Raith EO software make sure that the Faraday cup is in the center of the image. If necessary, fine tune the position manually, by using the joystick.

STEP 3 Ensure that scanning is controlled via the lithography software. The icon must display EXT. This will turn the system into spot-mode, so all electrons will go into the Faraday cup.

STEP $4>$ Take note of the current.
Figure 7-6 Measuring the Current.

HINT

Task 3 Patterning

STEP 1 Make sure that the Writefield size is set to $100 \mu \mathrm{~m}$ in the Writefield

 Manager window.
STEP 2

Open a New Positionlist via the menu bar, File $>$ New Positionlist. Drag and drop the design Chip into the positionlist.

Figure 7-7 Open a New Positionlist.

STEP 3
By default, the Patterning is scheduled for the current sample position. The next step is to change the Patterning position to the required location. Assuming that your sample has a UV coordinate range between $\mathrm{U}=\mathrm{V}=0$ and $\mathrm{U}=\mathrm{V}=10 \mathrm{~mm}$, the first Patterning could be set at $\mathrm{U}=2$ and $\mathrm{V}=2 \mathrm{~mm}$. To set the new UV coordinates, click once with the right hand mouse button at the corresponding line in the positionlist and a cascading menu will be displayed. Click on Properties. Enter the position to $\mathrm{U}=\mathrm{V}=2 \mathrm{~mm}$.

Figure 7-8 Patterning Properties window.

STEP 4

Figure 7-9 Select
Patterning Layer.

In the Patterning Properties dialog box, click on the Layer button and select layers $0-6$ as well as layers 8,10 and 11. Confirm with OK.

Selected Layers are now displayed.

Click on the Select Working Area icon. Patterning Properties can be edited

STEP 5

Figure 7-10 Working Area parameters.
gure 7-11 Working
Area defined within the Patterning Properties Dialog.

In the same dialog box click on the Select Working Area icon this will open a new dialog box. Select the working area named Complete Pattern. Confirm both windows with OK.

Select the Complete Pattern row.

STEP 6

Goto the Patterning Parameter window by clicking on the corresponding icon in the control bar. Check the checkbox for SPL Exposure, Curved elements and Dot Exposure. Click the calculator icon.

Figure 7-12 Opening the Patterning Parameter Window.

Click on the calculator icon to open the Patterning Parameter Calculation.

Select the Check the checkbox for Lines, Curved Paterning icon. elements and Dots.

The Beam Current in the Patterning Parameter Calculation window shows the same value as measured before. There are different tabs assigned for Areas, Curved elements, Lines and Dots. At the bottom of the window the formula used for area, line or dot is given. On the right hand side of each parameter a Calculator button is shown in order to recalculate the corresponding parameter.

STEP 7 Select the Area tab. Enter the Area Dose, which depends on your resist. For example, if you use PMMA, 950 k molecular weight, thickness 100 nm , as provided with the starter kit, and beam voltage of 10 keV , the area dose is $100 \mu \mathrm{As} / \mathrm{cm}^{2}$. Click on the Curved Elements tab and enter the same dose value. Click on the Line tab and enter the corresponding Line Dose of 300 $\mathrm{pAs} / \mathrm{cm}$. Then click on the Dot tab and enter 0.01 pAs for the Dose.

HINT
After you have entered the appropriate dose, the corresponding tab title (Area, Curved Elements, Line or Dot) will normally be shown in red. In addition, the corresponding formula is shown in red and the $\mathbf{O K}$ button is disabled and shown in gray, since the parameters are no longer consistent.

STEP $8>$ Switch back to the Area tab and enter the step size and line spacing of 0.020 $\mu \mathrm{m}$. Click the Calculator button next to the Dwell time. This will recalculate the corresponding Area Dwell Time according to the formula shown at the bottom.

After you have recalculated the Area Dwell Time, the parameters are consistent and therefore the tab title as well as the formula are now shown in black.

Select the Curved Elements tab and enter the step size and line spacing of $0.020 \mu \mathrm{~m}$. Click the Calculator button next to the Dwell time.

Select the Line tab and enter $0.010 \mu \mathrm{~m}$ for the Line Step Size and click the Calculator button next to the Dwell time. After the recalculation, the tab title as well as the formula will change again to black, as the parameter set is now consistent.

Select the Dot tab. In this case no Step Size is required. Simply click the Calculator button next to the Dwell time.

Now all four tab titles, Area, Curved Elements, Line and Dot should be in black and the $\mathbf{O K}$ button is now enabled. Click on OK.

Figure 7-13 Opening the Patterning Parame

HINT
It is possible to individually evaluate Dot, Line, Curved Elements in conjunction with the Area.

Go to the Positionlist window. Highlight the corresponding line with the right mouse button, select Properties. The dialog box, Patterning Properties will open. Click on the Patterning Parameter button to display the exposure values. Click on the Times button to obtain the Estimated Patterning Time.

Figure 7-14 Patterning
Properties displays the Estimated Patterning Times.

STEP 14
Activate the positionlist. Go to the menu bar and select Scan > Selection. The stage will now drive to the position to execute the patterning task.

If you wish to calculate the Patterning time for the complete Positionlist, go to menu bar Filter>Calculate Patterning time.

Task 4 Developing the sample

STEP $1>$ Unload the sample.

STEP 2

Develop the resist according to its type. For example, if you have used the PMMA sample type described earlier, it should be dipped into the developer MIBK:IPA=1:3 for 30 seconds and immediately afterward for 15 seconds in pure isopropanol. To ensure a clean surface, the sample should be blown dry using nitrogen.

STEP 3 After you have completed the first inspection using the optical microscope, you can insert the sample into the RAITH system. Perform the stage alignment and address the corresponding sample positions. In our example $\mathrm{U}=\mathrm{V}$ $=2 \mathrm{~mm}$, for imaging the pattern.

Task 5 Multiple Patterning

STEP 1

We will expose a structure which has no dose variation. Highlight the line in the positionlist, select Filter > Matrix Copy and enter values for Matrix size, Step size and Dose scaling.

Figure 7-15 Create Position Matrix.

STEP 2

The structure will be exposed 4 times, each with a different dose, always increasing by 50%. To check the individual dose factors, highlight the corresponding line with the right mouse button, select Properties $>$ Patterning Parameters.

7.2 Patterning for FBMS Elements

Task 1 Patterning parameters for FBMS

STEP 1
You can add FBMS elements via the menu bar, Add $>$ FBMS $>$ Path (or circle).

Figure 7-16 Add
FBMS elements.

STEP 2
In Patterning Parameters, you may choose an FBMS Area or an FBMS Line, for either of which you may choose the stage speed.

If you wish to expose using FBMS, as well as the standard structures, do not check FBMS elements only. The only time that you should check this option is when you wish to expose FBMS elements with no standard structures.

STEP 3
 Go to Patterning Parameter Calculation. Now there are two more tabs available. One is for FBMS Area and one for FBMS Line, in which the

 Stage Speed or the Dose can be calculated.Figure 7-17 Patterning Parameter for FBMS elements.

STEP 4

Within the Patterning Parameters Calculation window, in the FBMSArea, you will find the Calculation Width, which represents the typical width of a structure to be used for the design. This typical width can be set by the user, in Patterning Details within FBMS.

8 Mix and Match Patterning

AIM

The aim of this tutorial is to perform a Mix and Match Patterning. In a Mix and Match procedure, a second lithography step is placed into an existing pattern.

This is a more advanced task. It is assumed that the user has carried out all previous tasks, to become familiar with the system.

Task 1 Locating the first mark
Task 2 Defining local UV positions of marks
Task 3 3-points adjustment
Task 4 Semi-automated Writefield alignment
Task 5 Automated Writefield alignment
Task 6 Patterning

Task 1 Locating the first mark

It is assumed that you have already followed the first few chapters, including the chapter Patterning. After developing the sample, load the sample into your system again and perform the steps described in the chapter, Stage Adjustment for the global coordinate system.

STEP 1 In order to find the first mark, open the Stage Control window by clicking the corresponding Stage Control icon in the control bar. Enter the value 2 for U and V. Click on Start.

Figure 8-1 Opening the Stage Control window.

STEP 2
On the column desktop select a magnification of 3000x. Switch on a crosshairs and unblank the beam. The first mark should now be visible.

Figure 8-2 Moving the crosshairs over the mark via the joystick.

Using the joystick, move the mark over the crosshairs and switch off the beam. The next task is to define a local coordinate system based on the design coordinates of the marks.

Task 2 Defining local UV positions of marks

STEP $1>$ In the Adjust UVW window, switch to Local coordinates.

Open the GDSII Viewer with your corresponding pattern. In our example, open Demo.csf and Chip. Locate mark 1 within your pattern. In our example, the mark is located at $\mathrm{U}=\mathrm{V}=-150 \mu \mathrm{~m}$. Open the tool box, by clicking on the Toolbox icon in the GDSII viewer. Drag and drop the green flag 1 onto your mark 1.

Figure 8-3 Opening the GIDSIII Viewer and the GDSII tool box.

The UV coordinates for mark 1 will now be displayed in the Adjust UVW window.

STEP 2

Repeat the same procedure for marks 2 and 3. In our example, mark 2 is located at $\mathrm{U}=450 \mu \mathrm{~m}$ and $\mathrm{V}=-150 \mu \mathrm{~m}$ and mark 3 is located at $\mathrm{U}=\mathrm{V}=450$ $\mu \mathrm{m}$.

STEP $3>$ Uncheck all three positions.

Figure 8-4 3-Points tab in Adjust UVW window.

Task 3 3-points adjustment

STEP 1 Open the Adjust UVW window and select the tab 3-Points. Switch to Local coordinates.

HINT

If your sample is not leveled, it is also possible to read in the focus value together with the coordinates for all three marks. In this case, you would move the stage to all the three marks and re-adjust the focus on each mark before reading in the coordinates. In the Adjust $\mathbf{U V}$ window, the message Focus! will be displayed at the bottom of the window. The focus will now be changed for each digitally addressed UV location.

Figure 8-5 Select Options within the Adjust UVW window.

Figure 8-6 Adjust UV
Options with Automatic Focus Correction .

In Adjust UV Options, we will now check the box to Enable automated focus correction. The focus can be corrected in two ways. Here we will select the working distance. The lens will now move to adjust for the new focus settings. It is also possible to select Stage to adjust the automatic focus. In this case, the stage will be moved to re-adjust the focus.

Check the focus level. Click on the Pipette icon to update the current XY coordinates of the first mark position. Activate checkbox P1 and click on Adjust.

In this step, we have performed, in principle, an origin correction. This means that the origin of the local coordinate system has been redefined and is now identical to the origin of the design coordinate system (GDSII).

STEP 3
 Click on the Flash icon related to the UV coordinates of P2. This will move

 the stage to the second mark.STEP 4
Select a high magnification again, (approximately 3000x) and switch on the beam. Move the second marker so that the crosshairs is situated over the mark. Check the focus level.

Click on the Pipette icon of P2. The XY coordinates in the Adjust UVW window will be updated.

Click the checkbox of P2 and click Adjust. Please note that the UV coordinates have been updated after the adjustment has been performed.

STEP 5 Click on the Flash icon related to the UV coordinates of P3 to move the stage to mark 3 .

STEP 6

Make sure that a high magnification, (approximately 3000x) has been selected and switch on the beam. Move the third mark so that the crosshairs is situated above the mark. Check the focus level. Click on the Pipette icon of P3. The XY coordinates will be updated.

Check P3 and click Adjust.
Figure 8-8 All three
Marks have now been checked.

The local coordinates system is now identical to the GDSII design coordinate system.

Task 4 Semi-automated Writefield alignment

STEP 1

Move the stage back to the first mark, for example by clicking the corresponding icon:

STEP 2
Open the Writefield Manager window, select $100 \mu \mathrm{~m}$ Writefield from the list and click on

Figure 8-9 Open the Writefield Manager dialog.

STEP 3
 Open a new positionlist.

STEP 4 Select the structure Chip from the database Demo.csf and drag and drop it into the positionlist.

Figure 8-10 Open a new Positionlist.

Select the line in the positionlist using the right mouse button. Select Properties. Click on the Layer icon and select layer 63.
Figure 8-11 Select
Patterning Layer.

STEP 6

Click on the Working area icon and select the Working area Writefield Calibration and confirm with OK. Adjust the UV position by clicking the corresponding icon.

This command will use the pre-defined working area and the Writefield size to calculate the correct sample UV position. It is very important to set-up the Writefield and working area beforehand.

Figure 8-12 Viewing the Patterning Properties.

STEP 7 Activate the Positionlist. Select Scan > All from the menu bar. The stage will now drive to the corresponding position and the manual mark scan during patterning will be initiated. The software will generate the positionlist Align.pls. The positionlist will be filled with the corresponding Marks scan. The scanning of the positionlist will start automatically and after the first image, the software will pause to await interaction with the user.

STEP 8 The green cross displayed in the center of the image defines where the mark is expected. At this stage, the mark will probably not be at the center, but it can now be defined manually. To define the position of the mark, keep the Ctrl key pressed and the left mouse button pressed while moving the mouse cursor to the real mark position. Once you have reached the new position, release the Ctrl key and a blue cross will be displayed at the selected position.

Figure 8-13 Green cross positioning in the images.

The cross can be moved to the exact mark position. Once the location is accepted, a blue cross appears at the mark position and the former center is marked as well.

The green cross shows the position where the mark is expected

STEP 9

Click on Continue to proceed with the positionlist and the following mark scans.

Task 5 Automated Writefield alignment

STEP 1

Move the stage back to the first mark, for example by pressing the corresponding icon: \square

STEP 2 Open the Writefield Manager window, select $100 \mu \mathrm{~m}$ Writefield from the list.

Figure 8-14 Select the Writefield Manager window.

STEP $3>$ Open a new Positionlist.

STEP 4
Select the structure Chip from the database Demo.csf and drag and drop it into the positionlist.

Figure 8-15 Opening a new Positionlist.

STEP 5 Click once with the right mouse button at the corresponding line and a dialog box will be displayed. Select Properties.

Click then on the Layer icon and select layer 061.
Figure 8-16 Select layer 61.

STEP 6

Click on the Working Area icon.
Figure 8-17 Working Area.

Select the work area Writefield Calibration. Confirm with OK.

STEP 7 Adjust the UV position by clicking the Position button.

Figure 8-18 Patterning

This command will use the pre-defined working area and the Writefield size to calculate the correct sample UV position. It is very important to set-up the Writefield and working area beforehand.

Activate the positionlist. Select Scan > All from the menu bar. The stage will now drive to the corresponding position and the auto mark scan during patterning will be initiated.

The software will open a new positionlist, called Align.pls. A set of mark detections is stored within this positionlist and executed automatically.

During the execution of the positionlist Align.pls we will be able to observe progress. Several line scans will be displayed, but it is unlikely that there will be a valid parameter set for mark detection within the line scanning and many errors will be shown. Once the execution of the positionlist is completed, the software will close Align.pls which will close all the line scans.

STEP 9

Figure 8-19 Setting up the automated writefield alignment procedure in the Positionlist.

STEP 10

Figure 8-20 The Linescan is now displayed.

The next step is to find a parameter set such that during the automated writefield alignment procedure, the software will be able to detect all the marks.

Go to File > Open Positionlist and open the positionlist Align.pls, which has been stored in your user directory Data.

- Positionlist NONAME.pls										- \square 俉
	ID	U	V	Altribute	Template	Comment	Options	Type	Pos1	Pos2
0	0	-0.036500	-0.040000	LE*	dUV	Autoalign V	1STAY;	RAUTOSCAI	-40.597	-39.398
o	1	-0.040000	-0.036000		dUV	Autoalign U	STAY:	Rabutoscan	-41.194	-38.797
-	2	-0.036500	0.040000	LE*	dUV	Autoalign V2	STAY;	Rabloscan	39.403	40.602
o	3	-0.040000	0.044000	LE*	dUV	Autoalign US	STAY;	Rabtoscan	-41.194	-38.797
o	4	0.043500	-0.040000	LS*	dUV	Autoalign V/	STAY:	RAUTOSCA	-40.597	-39.398
o	5	0.040000	-0.036000	LE*	dUV	Autoalign U:	STAY;	Rabtoscan	38.806	41.203
0	5	0.043500	0.040000	LE*	dUV	Autoalign V	STAY:	RALUTOSCAN	39.403	40.602
0	7	0.040000	0.044000	LS ${ }^{\text {x }}$	dUV	Autoalign U	STAY;	RAUTOSCAI	38.806	41.203
	8	0.000000	0.000000	h	dUV	Alignment m	STAY;	MACRO		
										-
		1	1 Lot ID			Wafer		Slo	ot:	
Green indicator light = successfully executed										
Blue indicator light					$=$ not u	sed				
Red indicator light					$=$ error					

As we have not completed the optimization yet, the indicator light is displayed in red, since the Line scan could not be completed successfully. The corresponding Attributes show LE for Line scan error.

Double click on one of the lines with an error and the corresponding Line scan will be opened. Select the Threshold Algorithm from the dropdown list and click on the Apply button.

STEP 11 Select the parameter called Writefield alignment from the dropdown list. Select Relative. For Lower select 50, for Upper, select 70. For Edge Definition, select $1^{\text {st }}$ edge from left and $1^{\text {st }}$ edge from right. For both edges select 50%. For Structure select type Maximum and a Width range from 500 nm to 2500 nm .

STEP 12 Press Apply. The software now applies the threshold algorithm with the parameter set chosen to the corresponding Line scan. If you were able to detect a mark, then the corresponding result will be displayed in the line scan by plotting red bars and a particular line width bar.
Figure 8-21 Applying the Threshold
Algorithm.

STEP 13
The next step is to optimize the parameter set. In our example, increase the Lower Threshold value.

Go back to the parameter set window and select a structure width range of 400-800. Press Apply again.

STEP 14

Figure 8-22 Changing the Threshold values.

In our example, the thresholds of 50% and 70% were not well selected. By reducing both thresholds to 30% to 40%, improved results were achieved.

$$
\begin{array}{|l}
\text { Edge definition } \\
\text { Leit: } \sqrt{1} \text {.edge } \subset \text { from left C from right } \\
\text { at } \sqrt{50} \% \\
\text { Right: } \sqrt{1} \text {.edge } C \text { from left } \subset \text { from right } \\
\text { at } \sqrt{50} \%
\end{array}
$$

$$
\begin{aligned}
& \text { Structure } \\
& \text { Type: } \\
& \begin{array}{ll|l|l}
\hline \text { maximumi } & \text { च } & 400 & \text { to } \mid 800 \\
\mathrm{~nm}
\end{array}
\end{aligned}
$$

Display

C Pasition
© Width

Since we have now defined the parameter set, the software will be able to detect the line successfully in the Threshold Algorithm window. Save the parameters and close the window with $\mathbf{O K}$. In addition, close only the Line scan window but leave the positionlist Align.pls open.

STEP 15

Figure 8－23 Scan All positions in the Positionlist．

The next step is the verification of the parameter set．Activate the window Positionlist Align．pls．In the menu bar，go to Scan＞All．The software will start scanning the positionlist again．

It is very likely that the software will now be able to apply the Threshold algorithm to all the Line scans．Therefore，there will no longer be an error message in the positionlist．

［－Positionlist NONAME．pls												－\square－
	－	回囫	（1）冝｜	E，旦析	（1）	4 日	Include	all Exclu	nor			
	ID	U	V	Attribute	Template	Comment	Options	Type	Pos1		Pos2	Pos3
\bigcirc	0	－0．036500－0．040000 LS＊			dUV	Autoalign V1STAY；		RAUTOSCAN－ 40.597			－39．398	－39．998
\bigcirc	1	－0．040000－0．036000 LS＊			dUV	Autoalign U	STAY：	RAUUTOSCAN	－41．194		－38．797	－39．995
0	2	－ 0.0365000 .040000		LS＊	dUV	Autoalign V／	STAY：	RAUTOSCAN	39.403		40.602	40.002
0	3	－0．040000 0.044000		LS＊	dUV	Autoalign	STAY；	RAUTOSCAN	－41．194		－38．797	－39．995
\bigcirc	4	0.043500	－0．040000		dUV	Autoalign V	STAY：	RALUTOSCAN	－40．597		－39．398	－39．998
\bigcirc	5		－0．036000	LS＊	dUV	Autoalign U	STAY；	RAMUTOSCA，	38.806		41.203	40.005
0	6	0.043500	0.040000	LS＊	dUV	Autoalign V／	STAY：	RAUTOTOSCAN	39.403		40.602	40.002
\bigcirc	7	0.040000	0.044000	LS＊	dUV	Autoalign U．	STAY：	RAUTOSCAN	38.806		41.203	40.005
	8	0.000000	0.000000	h	dUV	Alignment m	STAY；	MACRO				
1												\cdots
1：1＊			1 Lot ID：				Wafer ID：			Slot：		

After the positionlist Align．csf has been performed successfully，close the window．

If the positionlist could not be performed successfully，you will need to change the parameters for the Threshold Algorithm．Therefore，start from STEP 10 again．

Task 6 Patterning

STEP 1

Select the first positionlist, e.g. NoName.pls, and press with the right mouse button on the corresponding line. Select Properties again.

STEP 2

Now we select the layers to be exposed. Choose on the Layer icon. Select Layers 7, 9 and 61 or 63 . Confirm with OK.

Click on the Working area icon and select the Working Area. Complete the pattern and confirm with OK.

Adjust the UV position by pressing the corresponding button.

STEP 3 Choose Patterning Parameters, which will give you access to the complete

 set of exposure parameters, which are disabled, prior to selecting calculator.The next step is to enter the Area Dose, which depends on your resist. For example, if you use PMMA, 950 k molecular weight, thickness 100 nm and beam voltage of 10 keV , the area dose is about $100 \mu \mathrm{As} / \mathrm{cm}^{2}$.

STEP $4>$ Enter the step size of $0.016 \mu \mathrm{~m}$. Press the Calculator button next to the Dwell time. This will recalculate the corresponding Area dwell time according to the formula shown at the bottom. Of course the beam current has to be read beforehand. Confirm with OK.

STEP 5

The last task is now to execute the positionlist. Depending on your selection of either automated procedure (Layer 61) or semi-automated procedure (63), user interactions may be required. After completion, the sample can be developed and inspected.

9 Automation

AIM

The aim of this chapter is to explain the automated features within the Column Control. The parameters voltage, aperture and working distances can be selected and automatically initiated from the positionlist. It is also possible to start and stop the Column or to select standby from the positionlist. In addition, an automated Writefield alignment can be initiated from the positionlist.

Task 1 Setting Column Control parameters
Task 2 Activating Column Control in a Positionlist
Task 3 Automated Writefield alignment
Task 4 Further automation

Task 1 Setting Column Control parameters

STEP 1 Click on the Column Control icon in the control bar to open the Column Control window. In Column Control you can Start and Stop the column and the EHT. You can also set Voltages with Apertures, as well as the Working distances automatically.

Figure 9-1 Column Control Parameters.

Click on this icon to Edit Dataset Values.

Click on this icon to activate the selected mode.

You can select different Apertures with Voltages and Working Distance combinations.

Select the Column Control icon.

It is highly recommended to edit these parameters only via Column Control, not via the Raith EO software, since the Column Control automatically ramps up to the selected setting, thus avoiding any damage to the system,

In Column Control, if you check Column Standby, the vacuum will be maintained, but the EHT will be switched off and the column will be kept running.

Column Stop will stop the column.

STEP 2

Figure 9-2 Edit
Dataset Values
Parameters.

To Edit Dataset Values, you can either double click on the selected voltage and working distance or alternatively you can click the Edit Dataset Values icon. This will open a new window, Edit Dataset Values, in which all of the values for acceleration, voltages, detector, apertures, magnification etc. can be set.

Once you have edited all of your typical values, it is important to click the Current Values button. The values from the Column Control will be taken over into the dataset automatically.

To activate the settings, click on the icon Activate Selected Mode in the Column Control window.

Figure 9-3 Clicking on the icon Activate Selected Mode in the Column Control window will initiate this process.

Initializing 10kV 10 mm WD (30 um Aperture)		
Time	Event	
医 $4: 17: 33 \ldots$	Start activate dataset: 10 kV 10 mm Vacuum state ready? Vacuum state ready! Is the right detector selected? Signal detector ready!	
Progress:		
MTIITII		
	Cancel	OK

Task 2 Activating Column Control in a Positionlist

STEP 1 -
 To use these Column Control parameters, you can drag and drop them into

Figure 9-4 Drag \&
Drop Column Control parameters into Positionlist. the positionlist.

In the Positionlist shown in this example, we dragged and dropped the 10kV30umaperture command into the first row. For the second position in the positionlist, we chose to use a higher voltage of 20 kV . It is also possible to include Column Standby and Column Stop into the positionlist. When the positionlist is executed, the column parameters will be changed accordingly.

Task 3 Automated Writefield Alignment

STEP 1

Figure 9-5 New
Writefield properties dialog.

STEP 2 The next step is to Save the New Writefield properties to the database. The writefield definition will be taken over, as well as automatically saving the corresponding writefield alignment parameters. To save, click on the Save icon.

Figure 9-6 Saving the values.

Figure 9-7 Saving the data to Database.

If the position in the Writefield Manager window is displayed in blue, it alerts the user to the fact that the values in the saved Database file differ from those in the Writefield Alignment window.

It is always possible to work within the Writefield Alignment window, to carry out Writefield Alignment and to use the correct values for Zoom, Shift and Rotation in the window, without saving the parameters. To save them, click the Save icon in the Writefield Manager window.

STEP 3

Figure 9-8 Drag \& drop Writefield Alignment into positionlist.

You can drag \& drop the Writefield Alignment into the positionlist. Executing the positionlist will set the Writefield Alignment values.

Task 4 Further automation

STEP 1 It is also possible to drag and drop scripts into the positionlist.
If you open the Automation icon, a list of pre-written scripts and records will be displayed. These are saved in the User Script folder. The scripts and records can be dragged and dropped into the positionlist.

Figure 9-9 Automated window.

Figure 9-10 Drag and Drop Automation into position list.

STEP 2
 To open the Scripting Editor, click on Files in the Automation window.
 Select the file script you wish to open and double click on it.

Figure 9-11 Drag and Drop Automation into position list.

Automation	0 0		
Files \|Command			
Name	Type	\wedge	
8 Magnification1000	JScript		
Q Magnification500	JScript		
ShutDown	JScript		
Startlp	JScript		
SWait	JScript		
		\checkmark	

If you want to create or edit a script, you can open the Scripting Editor in the software. You can also create record files within the same editor. Any changes must be saved into the User folder. This will update the list in the Automation window, and saved items will become available for drag \& drop into the positionlist.

Double click on the required script and a new window will open, displaying the details of the script.

Figure 9-12 Viewing a Script.

To open a new script, go to File $>$ New Script.
Figure 9-13 Opening a
New Script.

File Project Extras Window
Close
New image
Open image...
Open linescan...
New positionlist
Open positionlist...
New wafermap
Open wafermap...
New script
Open script...
Open navigator...
Exit

A new script can now be created.

HINT

Figure 9-14 RAITH Scripting Help.

The RAITH Scripting Help teaches you all of the special commands for the RAITH software. The full scripting is based on Java script for internet files. In addition, you have the records files, into which commands from the Command tab can be dropped. These can be written and used for programming.

In order to access the RAITH Scripting Help, go to Windows Explorer, select your RAITH product. Then select Help then Script. Within the Script folder, double-click on RaithScriptingHelp.chm.

Click on the Index tab and then type wait into the keyword text field.

The word wait will then be highlighted in the list. Double click on the word wait to access the information.

10 Patterning on wafer

Abstract

AIM Before a patterning on wafer can be carried out, the user has to create a new wafer layout and carry out the wafer orientation. This tutorial will take the user through the steps required for creating a new, unpatterned wafer, performing the wafer adjustment using a flat on the side of the wafer and finally the Deskew procedure. Afterwards, the wafer exposure can be carried out.

Task 1 Creating a Wafermap
Task 2 Performing the Wafer adjustment
Task 3 Performing the Deskew

Task 1 Creating a Wafermap

STEP 1

Figure 10-1 Opening the default Wafermap.

File	Project	Extras
Close		
New image		
Open image...		
Open linescan...		
New positionlist		
Open positionlist...		
New wafermap		
Open wafermap...		
New script		
Open script...		
Open navigator...		
Exit	Alt $+X$	

STEP 2

Figure 10-2 Opening the Waferlayout.

The next step is to define the wafer layout. Go to File $>$ Waferlayout. A new window, Edit Waferlayout, is now displayed, in which all parameters can be edited.

If you want to use an unpatterned wafer, you must check the checkbox Unpatterned wafer in the Edit Waferlayout window. In our example, we will start with an unpatterned wafer.

STEP 3
 Check the checkbox Unpatterned wafer.

In the Dimension fields you must enter the dimensions of your unpatterned wafer.

You can enter the Filename at the top. Click OK to confirm.
Figure 10-3 Edit
Waferlayout.

A blank wafermap will now be displayed, showing a white field.
Figure 10-4 Showing the Unpatterned Wafer.

For easier wafer orientation, it is often useful to either create a Flat, Square or Notch on your wafer. Go back to Edit Waferlayout, Coarse Alignment and click on the downward arrow of the Type field. Select either Major Flat, Square or Notch. In our example, we will create a Major Flat on the left hand side of the wafer. The Position can be chosen by clicking on the downward arrow of the Position field. The selected Coarse Alignment will be shown on the waferlayout.

HINT
The flat helps with the orientation of a round wafer, to define the center of the wafer and for general orientation.

Figure 10-5 Creating a Flat on the
Unpatterned Wafer.

Task 2 Performing the wafer adjustment

STEP $1>$ Go to the menu bar Edit> Unpatterned wafer adjustment.
The Wafer adjust window will open, in which we can carry out the wafer adjustment using 3 marks.

STEP 2 First go to the position using the Flash icon for Perimeter Mark \#1, then activate the Column Control software. Using the joystick, locate the edge of the sample, then save this first mark position by clicking on the Read button.

STEP 3
Repeat the same procedure for the Perimeter Marks \#2 and \#3 positions.

Figure 10-7 Reading in the Coordinates.

Use the Flash icon to move to the Perimeter mark. Move to the selected position on your sample using the joystick. Confirm the coordinates by clicking the Read button.

Click the Rotate button to obtain the center of your wafer.

STEP 4
Next, you will obtain the Rotation, which will now give you the center of your wafer. In this way, all of your structures will be positioned correctly on your wafer.

By entering a value next to the Rotate button, the three arms of your parameter marks will rotate.

Task 3 Performing the Deskew

STEP 1

Finally, to give your structure an orientation on the wafer, and to be able to find this orientation again using the flat of the wafer, the so-called Deskew marks are saved by the software. The term Deskew refers to the process of correcting for the non-horizontal orientation of the surface of the wafer.

Check the checkboxes for Deskew Marks.

Figure 10-8 Performing the Deskew.

Check the checkboxes for Deskew Marks.

To use the parameters again, you need to go through a location procedure using the parameter marks.

Drive, using the joystick, to locate the real edge position of your sample, then Read in the coordinates. Drive to the second position and then click Read to read in the coordinates.

Click on the Adjust button to confirm the Deskew.

The wafer layout and orientation are now completed.

Index

Symbols

3-points adjustment 8-5

A

Activate Selected Mode 9-4
Active working area 5-21
Add a Layer 5-16
Adjust UVW 3-2
Adjust UVW window 8-5
Adjust W 3-5
Advanced Patterning Parameters 7-17
Advanced Pattern Design 6-1
Alignment Procedure 4-19
Angle correction 3-2
Aperture alignment 2-3
Area 7-10
Area Dose 7-10
Area Dwell Time 7-10
Astigmatism 2-6
Auto placement 4-6
Automated Writefield alignment 9-6
Automated alignment procedure 4-11
Automated Writefield alignment 8-11
Automatic with Images 4-11
Automation 9-1

B

Base UV 3-6
Beam blanker 1-7, 7-5
Beam current 7-5
Beam tracking 4-20
Brightness 1-9

C

Calculation Width 7-17
Calibrated beam 4-19
CCD camera 1-5
Chessy 6-7
Column software 1-2
Column Standby 9-2
Command line 3-7
Contrast 1-9
Control bar 1-8
Create a Matrix 5-22
Create a New Structure 5-3
Create GDSII Database 5-2
Create reference image first 4-14
Creating a design 5-2
Creating a spot 2-8
Creating a Wafermap 10-2
Crosshairs 3-2
Curved Elements 7-10

D

Defining local UV positions 8-3
Demo pattern 7-2
Designing FBMS elements 6-10
Deskew 10-8
Deskew Marks 10-8
Developing the sample 7-14
Different layers 5-15
Digital addressing 3-6
Dose colors 5-13
Dose factors 5-20
Drive tab 3-6
Dwell time 7-10

E

E-Beam Optimization 2-1
Edge Definition 8-15
Edit Dataset Values 9-3
Edit Waferlayout 10-2
Enable automated focus correction 8-6
Estimated Patterning Time 7-12
Exposure 7-1
Exposure Details 7-17
Exposure Parameter Calculation 7-9
Exposure Properties 7-7

F

Faraday cup 7-5
FBMS 4-18
FBMS Area 7-16
FBMS elements 6-10
FBMS elements only 7-16
FBMS Line 7-16
Finding your sample 1-12
Flash icon 3-4
Focus 2-2
Focus Control 1-10
Focus Wobble 2-4

G

GDSII Database 5-2
GDSII Editor 5-18
GDSII layer 5-17
GDSII Toolbox 5-5
General Pattern Design 5-1
Getting Started 1-1
Global 3-2

H

Hierarchy 6-2
Home Position 1-6

I

Image Matrix Filter 4-6
Imaging mode 1-3

J

Joystick 1-12

L

Layer Properties 5-15
Leveling limits 2-10
Line Step Size 7-10
Linescan 8-14
Load Lock 1-6
Load Sample 1-6
Local 3-2

M

Macro execution 4-8
Magnification 1-10
Mark procedure 4-5
Marked sequence 4-13
Matrix Copy 7-15
Measuring a distance 5-14
Mix \& Match Exposure 8-1
Modifying structures 5-10
Multiple exposure 7-15
Multiple_structures 5-10

N

New Positionlist 7-6
New Script 9-11

0

Obtaining an image 1-7
Origin correction 3-4

P

Password 1-2
Pattern design 5-5
Patterning mode 1-3
Perimeter Mark 10-6
Pipette 3-2
Placement parameters 4-5
Point average 4-4
Position absolute 3-6
Positionlist 4-7
Post Processing 4-6
Protocol 4-16

R

RAITH Scripting Help 9-12
RaithProtocolTool.exe 4-16

S

Sample holder 1-5
Scan Manager 4-3
Scan properties 4-4
Scan Speed 1-7
Scripting Editor 9-11
Select Working Area 7-8
Semi-automated Writefield alignment 8-8
Set New Writefield 4-2
Show dose 5-13
Stage Adjustment 3-1
Stage Control 3-6, 7-5
Start the system 1-2
Stigmation 2-6
Structure reference 5-11
Studying chessy 6-7
T

Threshold Algorithm 8-14

U

Unpatterned wafer 10-2

W

Wafer adjustment 10-6
Wafer Exposure 10-1
Waferlayout 10-2
Wafermap 10-2
Width range 8-15
Wobble Amplitude 2-4
Working Distance 1-10
Writefield Alignment 4-1
Writefield Calibration 8-9
Writefield Manager 4-3

[^0]: Task 1 Start the system
 Task 2 Preparing a suitable sample
 Task 3 Loading and unloading samples
 Task 4 Obtaining an image
 Task 5 Finding your sample

[^1]: eff: Mag $=50 \times \mid$ Mid: $\mathrm{WD}=2.3 \mathrm{~mm}$
 Fine \quad Vac:
 Gun:
 EHT:

