Operating Instructions for

Helios NanoLab 600

Dualbeam Focused Ion Beam & Scanning Electron Microscope

RULES OF USE

1) DO NOT TOUCH A CONTROL IF YOU DON'T KNOW EXACTLY WHAT IT DOES.

2) NEVER, EVER FORCE ANYTHING BEYOND FINGER STRENGTH.

3) IF IN DOUBT - ASK FOR HELP.

Please note: This instruction can only be used by trained users as a reference. It is not intended to be the textbook on DIY purposes for the unauthorized personnel to use the machine without training and direct supervision.

ANFF@ANU

Front note

- The right hand side computer is used to run operating software of Helios, which should be setup and ready to use
- The left hand side computer has the software for Genesis EDS system and TSL EBSD data collection and analysis system
- The computer in the middle is the node connected to the ANFF server. All the data collected on Helios are saved in local director "SharedData/users" at first, and then uploaded to the server through the node by the user
- Usage will be monitored with both login information and system log files

Task 1: Start a FIB session

- Check list:
- > The sample size is suitable for the machine
- > The sample is flat and locked onto a pin stub
- The sample is dry and clean
- > The surface is conductive and well earthed
- > The silver paint is fully solidified, if applied
- The sitemap is available for multiple samples mounted on the same stub
- Double click system control software
 - Advanced 197
- Login your user account

Click on Start UI

• If the user interface is hided off the scene on the right hand side computer, click on Show UI on the screen,

Start	Stop	Show UI	Stop UI	×
		•		

Task 2: Load sample and get E beam image

- Vent the chamber
- Go to page 1, ^{*}
- Click on vent and confirm the action in pop-up window
- Wait for ~ 4 min, then try to open the chamber by pulling the handle bar gently
- Lock the stub onto the stage with the Allen key, and check the overall height with the gauge, make sure the height lower than the max line.
- Pump the chamber
- Gently close the door
- Click on Pump
- Wait for ~ 5 min, until the vacuum icon ¹ turn green ¹
- Select both electron and ion beam images in serial, and click on Beam On for both columns. If the ion source is not "green", click on Wake Up .

- Locate region of interest (ROI)
- Select E beam image, e.g. top left quad window
- Click on pause button to start E beam scan
- Reduce the magnification to <100x, and have an overview of whole sample</p>
- Align the working area if necessary
- > Locate a small feature, e.g. dust, near ROI as the reference
- Achieve a focused image
- Link Z to WD
- Go to page 2,
- > Click on the link icon $\boxed{\mathbf{A}}$ on the top of the window

Task 3: Setup Eucentric height and beam coincidence

- Standard working conditions are all based on the Eucentric height (~4.0 mm)
- Pt deposition can only be done at the Eucentric height

- Move stage upwards
 - Increase magnification of E beam image to above 1000x
 - Achieve a fine focus and update Z measurement by click on the icon
 - Input Z of 8 mm, check focus and update Z measurement with the button
 - > Input Z of 6 mm, check focus and update Z with
 - Input Z of 4.0 mm, check focus and update Z with
- Title stage
- Select "Zero beam shift" from the drop down menu of "stage" for both E beam and I beam image respectively
- > Set a small feature in the centre cross of the E beam image.
- Input title, T of 15 degrees.
- Make the feature back to the centre with Z adjustment by the mouse.
- Input T of 30 degrees, and re-adjust Z to centre the feature.
- ➢ Input T of 52 degrees, and re-adjust Z, if necessary.
- Setup beam coincidence
- Centre a reference feature on E beam image at 3500×
- Select I beam image in another window, e.g. top right quad window
- Check if the I beam current is small, then get a snapshot with the icon
- Centre the feature with beam shift knobs if necessary, and update the image with snapshot

Task 4: Cover ROI with Pt deposition

- Select an appropriate ion beam current
- > 2-6 pA/um² is recommended for general application
- Update the image after 10 seconds if changing the aperture sleep time to stabilise the beam
- Insert GIS needle
- Make sure that eucentric height has been set up correctly before doing this!
- * Make sure there is nothing higher than ROI nearby!!
- Go to page 3,
- Locate the "Pt dep" line, double click on the word "cold" in "Heat" column
- Wait until the yellow timing bar turn to the word "Warm"

- Insert the needle by tick the box "in"
- Confirm the action within the pop up window by click "Yes"

- Define a pattern
- Select rectangular pattern
- Draw a box on the I beam image
 - Green color box for deposition
 - Yellow color box for milling
- Change the Application to "Pt dep"
- Start/stop deposition
- Click on the triangle button
 - to start deposition
- The same set of buttons will allow the user to pause and stop
- When finish, remove the tick within the box under "in" to retreat the GIS needle

Task 5: Mill cross section and record image

- Select an appropriate ion beam current
- > 6.5 21nA are recommended for rough milling
- For the same pattern, smaller beam current leads to sharper images but in longer milling time
- Define a pattern

 Select/activate "Regular cross section" pattern for rough milling
Draw a box on the ion beam image

 Confirm Application file as "Si"
Other material files are also available in the click/drop-down menu

- Update parameters and location of the pattern if necessary
- Start/stop milling process
- The same set of buttons will allow the user to pause and stop
- Clean surface
- > Select a smaller ion beam current, 9.7 93 pA are recommended
- Update the image
- Select/activate "Cleaning cross section" pattern
- Draw a narrow box on the ion beam image
- > Update parameters and location of the pattern if necessary
- The same set of buttons will allow the user to pause and stop
- Monitor the progress with snapshot
- ot 🦰

- Take a photo
- Select/activate the quad desired E beam imaging is in common, but I beam imaging may show extra information for certain materials, such as channelling contrast for polycrystalline metals
- Check magnification, location and fine focus if necessary
- Press F2 -- pre-set scan speed for photo can be modified within Preferences/Scanning

Task 6: End a session

- Return to Page 1,
- Turn beam off by clicking on "beam on" for both E beam and lon beam
- Vent the chamber
- Click on Vent and confirm the action within the pop-up window
- Wait for ~4min, then try to open the chamber by pulling the handle bar gently
- Pump the empty chamber
- Gently close the door
- Click on Pump
- Wait for ~4min, the vacuum icon should turn green
- If you are the last user on the day, turn off the ion source
- Select/activate ion beam image
- Click on Sleep to turn off the ion source
- Logout your account

Advanced task: TEM lamella sample preparation

- AutoTEM G2 Software
- Preconditions:
- Stage Tilt: 52 °
- High voltage: 30 kV
- > Working distance: Eucentric (defined with E Column)
- Magnification: 1,000x
- Define the membrane
 - Start the AutoTEM G2 Software

Fress Create to start the recipe deminition process	\triangleright	Press	'Create'	to	start	the	recipe	definition	process
---	------------------	-------	----------	----	-------	-----	--------	------------	---------

Autores de		
ist of positions		
		Edit
		Goto
		Delete
		New list
		Open list
		Calibrate
Auto sleep after finish	Remaining preparation time: 00	00
?	Run Abort	Close

- Save the project
- > Select the following recipe '12x5 ex-situ lift-out'
- Verify the current parameters:
- Deselect 'skip fiducial milling'
- Select 'Mill Fiducials' to create fiducials for image recognition.
- > Select 'Refine' to enable accurate lamella positioning
- Select 'Finish' closing the recipe definition process.
- Run the sites
 - > Press the 'Run' button in the position list window.

b/5 ex-situ lift-out	*	Save as
gh performance e	x-situ littout recipe	Image 33
itmoted preparat	on time: 13.03	mage //
ample settings		
lesic Advenced	Process Control	
Final width	12 µm	
Final thickness	[0.1 μm	
Final depth	[5 μm	
Skip fiduciel mi	ling (mill during na - Jess eccurete)	

Advanced task: 3D imaging – Auto Slice & View

- Setup Eucentric height
- Locate ROI and cover it with Pt deposition (with the ion beam current of 2-6pA/um²) defined a thickness less than 0.5um (recommended)
- Make a regular cross section with high beam current, e.g. 9.3 21nA, at the leading edge of the ROI a bit deeper and wider than ROI
- Make trenches on both sides of ROI to avoid shading on images
- Clean up the side edges as the reference for 3D reconstruction
- Select an appropriate beam current for ion beam image, e.g. 93pA or higher
- Using cleaning cross section to clean the viewing area
- Tick the tilt correction in automatic mode
- Hide UI and create a folder in SharedData to store the image files
- Start AutoSlice&View G2 (click on the icon on the desktop)
- Direct image save location to the predefined folder, and change the prefix for data set

• Setup E beam image scan parameter, e.g. 9.05s

2 Beam	Image Scan Par	ameters		A. Slice :	Bean Ti	me (Ele	ctrombean
a Beam S rr Focus pause High Tr High Tr	Shift for Image of Adjust between section ension off after ension and Ion S	center 15 mill Source off	Fafter mil	Butto	n Text = f	Slice Sc Resolutio	an Time (s) in
	-			Small	Low	Med	High
Application	Si	-	Concession in the	- anion	0.23	0.91	3.62
enoth (v)	10			_	0.68	2.72	10.9
Depth (z)	1	- µm	1.2	Dwell	2.26	9.05	38.2
Current (op)	300	→ pA	N.	include	6.79	27.2	108
Blices	10		1 .		44 m	00.0	000
Slices/imag	1				22.6	90.5	362
enoth/Sice	c 0.500 µm		A 1	Large	0.7.0	1071	1000

• Select Focus Adjust from Setup menu

: (to cente mage Sca Image Sca	r cross) n Parame	eters					
Image Sca Image Sca	ra Daram	26012					
	EBeam Image Scan Parameters						
rate for 1m	age cent	er					
idjust							
letween si	ections						
nsion off a	Ion Cour	ine off	ofter mil				
i lakat i di ju	1011304	CE OII	arteer min				
Si	*						
10	_	μm					
5	_	μm					
1		μm					
308	*	pА					
10			1				
1			1				
9.500 µm							
	etween sinson off a rision and Si 10 5 11 3000 10 1 8,500 µm	state the sections insion off after mill insion and ion Sour Si	store are been sections rision off after mill rision and Ion Source off rision and Ion Source off rision are provided by the rision are provided by the provided by the provided by the rision are provided by the provided by the provided by the rision are provided by the provided by t				

- Beam Shift for Image Centre is optional
- Select E beam image within the same quad of I beam image by clicking

the icon 🗱 🏶 🖓 on the top left corner of the screen

• Optional step - If high resolution imaging is desired, switch to mode 2 with drop down menu

> a range of working conditions including limited kV, nA and WD required to activate mode 2

- From the menu bar, select stage/Zero beam shift
- Double click on the image to centre the viewing area for E beam image
- Return to I beam image, and use beam shift knobs to centre the ROI
- Input parameters for the slice (without Enter)
- Click on Show to see the overlay of the pattern on the ion beam image
- Modify the location with beam shift – do not move the patterns
- Capture/print screen or record important parameters for 3D reconstruction
- HFW for the final E beam image
- Image resolution for E beam image
- \succ Slice length y
- > Slice number

- Click on Run and work out the total time
- If there is a pop-up warning for over limitation of image shift, reduce the magnification of E beam image and retry
- If everything is OK, go home!

• Relationship of the Two Columns

PLEASE NOT REMOVE THIS INSTRUCTION FROM THE MACHINE ANYTIME!