Facebook Facebook

Newsletter Issue # 44

Direct Solar Hydrogen Production with Breakthrough Efficiency

 

After sustained efforts into the improvement of performance and cost competitiveness, photovoltaic cells have become commercially viable and are seeing a rampant large-scale deployment. Achieving global renewable energy transition further relies on addressing the intermittency of renewables through the development of transportable energy storage means. An elegant and potentially economical route to storing solar power is to convert the energy from sunlight directly into hydrogen, analogous to the photosynthesis process exploited by nature.


There are significant cost benefits to be achieved through the use of direct solar-to-hydrogen approach as it avoids the need for added power and network infrastructure when hydrogen is instead produced using an electrolyser. The direct conversion of solar energy into hydrogen can achieve a higher overall efficiency for the total process by avoiding the need to convert solar power from DC to AC power and back again, in addition to avoiding power transmission loses. In a recently published article in Advanced Energy Materials journal, the ANU team led by Dr. Siva Karuturi developed perovskite photovoltaic coupled Si photoelectrode to achieve an unprecedented solar-to-hydrogen (STH) efficiency of over 17%. This represents the highest efficiency ever achieved using low-cost semiconductors.

Figure 1. Illustration of the perovskite/Si tandem water splitting device for direct solar hydrogen production

 

 

The  STH  efficiency  of  a  solar water splitting  cell  is  determined  by  the  spectral  region  in  which  the  semiconductor  absorbs  the  light,  which  is  in  turn  determined  by  its  bandgap.  A  single  semiconductor  based   cell  requires  a  semiconductor  with  a  bandgap  >2.0  eV  for  spontaneous  water  spiting,  and  thus  presents  low  theoretical  efficiencies  as  it  can  only  harvest  a  small  fraction  of  solar  power. To address this, dual-semiconductor system can be used to achieve higher efficiency for water splitting.  Because  the  energy  required  to  drive  the  water  splitting  reaction  is  drawn  from  two  photons,  semiconductors  with  smaller  bandgaps  can  harvest  a  larger  fraction  of  the  solar  power  reaching  theoretical  STH  efficiencies  as  high  as  25%.

 

Figure 2. (a) Illustration of the Si photocathode developed by the ANU team. (b) Overlay of current-voltage curves of the perovskite cell, the Si photocathode behind the perovskite cell, and a dimensionally stable anode (DSA).

 

 

A  buried  p-n  junction  Si  photocathode (Figure 2a)  was developed to  minimize  photovoltage  losses  from  poor  band  energetics  and  a  decoupling  strategy  separating  light  harvesting  with  reactive  interfaces was adopted to  mitigate photocurrent  losses  from  parasitic  light  absorption.  The Si photocathode exhibited a current density of 39.7 mA cm-2 at 0 V versus RHE, an onset potential of 590 mV and photostability of over 3 days, and a remarkable 14.1% half-cell efficiency.


Despite this impressive performance, the photovoltage generated by the Si photocathode is still less than half the value  required  for  spontaneous  solar  water  splitting  without  external  electricity  input. To address this issue, perovskite cell of an appropriate bandgap  (≈1.75  eV)  was custom-designed as a front absorber. The resulting perovskite/Si  dual-absorber  cell  enabled  spontaneous  solar  water  splitting  with an unprecedented  over  17%  STH  efficiency (Figure 2b). 


Modelling  and  analysis  of  the  dual-absorber  stand-alone  PEC  system  show  that  there  are  opportunities  for  further  optimization  of  the  materials  and  performance,  with  a  potential  to  accomplish  an  STH  efficiency of over 20% using all low-cost materials. The ANU team is currently working towards achieving this goal. This research is supported by funding from the Australian Renewable Energy Agency. Access to fabrication facilities was enabled by the Australian National Fabrication Facility (ANFF), ACT node.

 

Siva Karuturi

CECS, ANU